Maschio M, Sperati F, Dinapoli L, et al. Weight of epilepsy in brain tumor patients. J Neurooncol. 2014;118(2):385–93. https://doi.org/10.1007/s11060-014-1449-7.
Ostrom QT, Price M, Neff C, et al. CBTRUS Statistical Report: primary brain and other Central Nervous System tumors diagnosed in the United States in 2015–2019. Neuro-Oncol. 2022;24(Suppl 5):v1–95. https://doi.org/10.1093/neuonc/noac202.
Article CAS PubMed PubMed Central Google Scholar
Venkataramani V, Tanev DI, Strahle C, et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 2019;573(7775):532–8. https://doi.org/10.1038/s41586-019-1564-x.
Article CAS PubMed Google Scholar
Venkatesh HS, Morishita W, Geraghty AC, et al. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019;573(7775):539–45. https://doi.org/10.1038/s41586-019-1563-y.
Article CAS PubMed PubMed Central Google Scholar
Avila EK, Chamberlain M, Schiff D, et al. Seizure control as a new metric in assessing efficacy of tumor treatment in low-grade glioma trials. Neuro-Oncol. 2017;19(1):12–21. https://doi.org/10.1093/neuonc/now190.
Buckingham SC, Campbell SL, Haas BR, et al. Glutamate release by primary brain tumors induces epileptic activity. Nat Med. 2011;17(10):1269–74. https://doi.org/10.1038/nm.2453.
Article CAS PubMed PubMed Central Google Scholar
Pallud J, Le Van Quyen M, Bielle F, et al. Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci Transl Med. 2014;6(244):244ra89. https://doi.org/10.1126/scitranslmed.3008065.
Article CAS PubMed PubMed Central Google Scholar
Curry RN, Aiba I, Meyer J, et al. Glioma epileptiform activity and progression are driven by IGSF3-mediated potassium dysregulation. Neuron. 2023;111(5):682–e6959. https://doi.org/10.1016/j.neuron.2023.01.013.
Article CAS PubMed PubMed Central Google Scholar
Krishna S, Choudhury A, Keough MB et al. Glioblastoma remodelling of human neural circuits decreases survival. Nature. 2023;617(7961):599–607. https://doi.org/10.1038/s41586-023-06036-1 (This study demonstrated that glioblastoma cells functionally integrate into language circuits contributing to task-relevant neural activity and high-gamma hyperexcitability in tumor infiltrated regions. Tumor cells in areas with high alpha-band connectivity were found to secrete synaptogenic factors, and greater connectivity was associated with decreased survival).
Venkatesh HS, Johung TB, Caretti V, et al. Neuronal activity promotes Glioma Growth through Neuroligin-3 secretion. Cell. 2015;161(4):803–16. https://doi.org/10.1016/j.cell.2015.04.012.
Article CAS PubMed PubMed Central Google Scholar
Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neuro-Oncol. 2021;23(8):1231–51. https://doi.org/10.1093/neuonc/noab106.
Article CAS PubMed PubMed Central Google Scholar
Chen H, Judkins J, Thomas C, et al. Mutant IDH1 and seizures in patients with glioma. Neurology. 2017;88(19):1805–13. https://doi.org/10.1212/WNL.0000000000003911.
Article CAS PubMed PubMed Central Google Scholar
Mortazavi A, Fayed F, Bachani M, et al. IDH-mutated gliomas promote epileptogenesis through d-2-hydroxyglutarate-dependent mTOR hyperactivation. Neuro-Oncol. 2022;24(9):1423–35. https://doi.org/10.1093/neuonc/noac003 (Using in vitro neuron-glioma cultures with microelectrode arrays, this study found that d-2-HG promotes hyperexcitability through a metabolic shift involving upregulation of lactate dehydrogenase A expression in an mTOR-dependent manner).
Tobochnik S, Dorotan MKC, Ghosh HS et al. Glioma genetic profiles associated with electrophysiologic hyperexcitability. Neuro-Oncol. 2024;26(2):323–334. https://doi.org/10.1093/neuonc/noad176 (In this glioma cohort, targeted exome sequencing of cancer genes revealed selective somatic mutations that were over-represented in patients with continuous EEG hyperexcitability, defined by lateralized periodic discharges and/or electrographic seizures, and independent of integrated pathologic diagnosis (including IDH mutations).
Jo J, Nevel K, Sutyla R, Smolkin M, Lopes MB, Schiff D. Predictors of early, recurrent, and intractable seizures in low-grade glioma. Neuro-Oncol Pract. 2021;8(1):40–7. https://doi.org/10.1093/nop/npaa054.
Song L, Quan X, Chen C, Chen L, Zhou J. Correlation between tumor molecular markers and Perioperative Epilepsy in patients with glioma: a systematic review and Meta-analysis. Front Neurol. 2021;12:692751. https://doi.org/10.3389/fneur.2021.692751.
Article PubMed PubMed Central Google Scholar
Englot DJ, Berger MS, Barbaro NM, Chang EF. Predictors of seizure freedom after resection of supratentorial low-grade gliomas: a review. J Neurosurg. 2011;115(2):240–4. https://doi.org/10.3171/2011.3.JNS1153.
Ius T, Pauletto G, Tomasino B, et al. Predictors of postoperative seizure outcome in low Grade Glioma: from volumetric analysis to Molecular Stratification. Cancers. 2020;12(2):397. https://doi.org/10.3390/cancers12020397.
Article PubMed PubMed Central Google Scholar
Yu K, Lin CCJ, Hatcher A et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature. 2020;578(7793):166–171. https://doi.org/10.1038/s41586-020-1952-2 (This study evaluated the effect of PIK3CA driver mutations on epileptogenicity in a mouse glioblastoma model, demonstrating that certain gain-of-function somatic mutations promote excitatory-inhibitory synaptic imbalance, and indicating the relevance of the tumor genetic profile to hyperexcitability and seizure risk).
Cases-Cunillera S, van Loo KMJ, Pitsch J, et al. Heterogeneity and excitability of BRAFV600E-induced tumors is determined by Akt/mTOR-signaling state and Trp53-loss. Neuro-Oncol. 2022;24(5):741–54. https://doi.org/10.1093/neuonc/noab268.
Article CAS PubMed Google Scholar
Tobochnik S, Pisano W, Lapinskas E, Ligon KL, Lee JW. Effect of PIK3CA variants on glioma-related epilepsy and response to treatment. Epilepsy Res. 2021;175:106681. https://doi.org/10.1016/j.eplepsyres.2021.106681.
Article CAS PubMed PubMed Central Google Scholar
Krueger Darcy A, Care Marguerite M, Katherine H, et al. Everolimus for Subependymal Giant-Cell Astrocytomas in Tuberous Sclerosis. N Engl J Med. 2010;363(19):1801–11. https://doi.org/10.1056/NEJMoa1001671.
Article CAS PubMed Google Scholar
French JA, Lawson JA, Yapici Z, et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet. 2016;388(10056):2153–63. https://doi.org/10.1016/S0140-6736(16)31419-2.
Article CAS PubMed Google Scholar
Goldberg AR, Dovas A, Torres D, et al. Glioma-Induced alterations in excitatory neurons are reversed by mTOR inhibition. BioRxiv Prepr Serv Biol. (Published Online January 2024);2024.01.10.575092.
Roy A, Skibo J, Kalume F et al. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. In: Morrison SJ, ed. ELife. 2015;4:e12703. https://doi.org/10.7554/eLife.12703.
Gupte TP, Li C, Jin L, et al. Clinical and genomic factors associated with seizures in meningiomas. J Neurosurg Published Online Dec. 2020;4:1–10. https://doi.org/10.3171/2020.7.JNS201042.
Koh HY, Kim SH, Jang J, et al. BRAF somatic mutation contributes to intrinsic epileptogenicity in pediatric brain tumors. Nat Med. 2018;24(11):1662–8. https://doi.org/10.1038/s41591-018-0172-x.
Article CAS PubMed Google Scholar
Maas DA, Douw L. Multiscale network neuroscience in neuro-oncology: how tumors, brain networks, and behavior connect across scales. Neuro-Oncol Pract. 2023;10(6):506–17. https://doi.org/10.1093/nop/npad044.
Avila EK, Tobochnik S, Inati SK, et al. Brain tumor-related epilepsy management: a Society for Neuro-oncology (SNO) consensus review on current management. Neuro-Oncol. 2024;26(1):7–24. https://doi.org/10.1093/neuonc/noad154.
Bruno F, Pellerino A, Conti Nibali M, et al. Association of Clinical, Tumor, and treatment characteristics with seizure control in patients with IDH1/2-Mutant Lower-Grade Glioma. Neurology. 2024;102(10):e209352. https://doi.org/10.1212/WNL.0000000000209352.
Article CAS PubMed Google Scholar
Hertler C, Seystahl K, Le Rhun E, et al. Improved seizure control in patients with recurrent glioblastoma treated with bevacizumab. Neuro-Oncol. 2022;24(11):2001–4. https://doi.org/10.1093/neuonc/noac172.
Article CAS PubMed PubMed Central Google Scholar
Hoppe C, Poepel A, Elger CE. Epilepsy: accuracy of patient seizure counts. Arch Neurol. 2007;64(11):1595–9. https://doi.org/10.1001/archneur.64.11.1595.
Comments (0)