Seidel MF et al (2022) Neurogenic inflammation as a novel treatment target for chronic pain syndromes. Exp Neurol 356:114108. https://doi.org/10.1016/j.expneurol.2022.114108
Article PubMed CAS Google Scholar
Cohen SP, Vase L, Hooten WM (2021) Chronic pain: an update on burden, best practices, and new advances. Lancet 397(10289):2082–2097. https://doi.org/10.1016/S0140-6736(21)00393-7
Meints SM, Edwards RR (2018) Evaluating psychosocial contributions to chronic pain outcomes. Prog Neuropsychopharmacol Biol Psychiatry 87(Pt B):168–182. https://doi.org/10.1016/j.pnpbp.2018.01.017
Article PubMed PubMed Central CAS Google Scholar
Afridi B et al (2021) Pain perception and management: where do we stand? Curr Mol Pharmacol 14(5):678–688. https://doi.org/10.2174/1874467213666200611142438
Article PubMed PubMed Central CAS Google Scholar
Bindu S, Mazumder S, Bandyopadhyay U (2020) Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol 180:114147. https://doi.org/10.1016/j.bcp.2020.114147
Article PubMed PubMed Central CAS Google Scholar
Ribeiro H et al (2022) Non-steroidal anti-inflammatory drugs (NSAIDs), pain and aging: Adjusting prescription to patient features. Biomed Pharmacother 150:112958. https://doi.org/10.1016/j.biopha.2022.112958
Article PubMed CAS Google Scholar
Enthoven WT et al (2016) Non-steroidal anti-inflammatory drugs for chronic low back pain. Cochrane Database Syst Rev 2(2):CD012087. https://doi.org/10.1002/14651858.CD012087
Gomes FIF, Cunha FQ, Cunha TM (2020) Peripheral nitric oxide signaling directly blocks inflammatory pain. Biochem Pharmacol 176:113862. https://doi.org/10.1016/j.bcp.2020.113862
Article PubMed CAS Google Scholar
Li C et al (2021) Common and discrete mechanisms underlying chronic pain and itch: peripheral and central sensitization. Pflugers Arch 473(10):1603–1615. https://doi.org/10.1007/s00424-021-02599-y
Article PubMed CAS Google Scholar
Cui GB et al (2012) Elevated interleukin-8 enhances prefrontal synaptic transmission in mice with persistent inflammatory pain. Mol Pain 8:11. https://doi.org/10.1186/1744-8069-8-11
Article PubMed PubMed Central CAS Google Scholar
Huang Z et al (2021) From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 6(1):162. https://doi.org/10.1038/s41392-021-00553-z
Article PubMed PubMed Central CAS Google Scholar
Hu SQ et al (2022) P2X7 receptor in inflammation and pain. Brain Res Bull 187:199–209. https://doi.org/10.1016/j.brainresbull.2022.07.006
Article PubMed CAS Google Scholar
Illes P, Khan TM, Rubini P (2017) Neuronal P2X7 receptors revisited: do they really exist? J Neurosci 37(30):7049–7062. https://doi.org/10.1523/JNEUROSCI.3103-16.2017
Article PubMed PubMed Central CAS Google Scholar
Rivera A, Vanzulli I, Butt AM (2016) A central role for ATP signalling in glial interactions in the CNS. Curr Drug Targets 17(16):1829–1833. https://doi.org/10.2174/1389450117666160711154529
Article PubMed CAS Google Scholar
Faria RX, Freitas HR, Reis RAM (2017) P2X7 receptor large pore signaling in avian Muller glial cells. J Bioenerg Biomembr 49(3):215–229. https://doi.org/10.1007/s10863-017-9717-9
Article PubMed CAS Google Scholar
Calik I et al (2020) P2X7 receptor as an independent prognostic indicator in gastric cancer. Bosn J Basic Med Sci 20(2):188–196. https://doi.org/10.17305/bjbms.2020.4620
Article PubMed PubMed Central CAS Google Scholar
Di Virgilio F et al (2017) The P2X7 receptor in infection and inflammation. Immunity 47(1):15–31. https://doi.org/10.1016/j.immuni.2017.06.020
Article PubMed CAS Google Scholar
Chessell IP et al (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114(3):386–396. https://doi.org/10.1016/j.pain.2005.01.002
Article PubMed CAS Google Scholar
Zhu Y et al (2021) P2X7 receptor antagonist BBG inhibits endoplasmic reticulum stress and pyroptosis to alleviate postherpetic neuralgia. Mol Cell Biochem 476(9):3461–3468. https://doi.org/10.1007/s11010-021-04169-3
Article PubMed CAS Google Scholar
Kobayashi K et al (2011) Induction of the P2X7 receptor in spinal microglia in a neuropathic pain model. Neurosci Lett 504(1):57–61. https://doi.org/10.1016/j.neulet.2011.08.058
Article PubMed CAS Google Scholar
Alves LA et al (2013) Physiological roles and potential therapeutic applications of the P2X7 receptor in inflammation and pain. Molecules 18(9):10953–10972. https://doi.org/10.3390/molecules180910953
Article PubMed PubMed Central CAS Google Scholar
Teng JF et al (2020) Polyphyllin VI induces Caspase-1-Mediated pyroptosis via the induction of ROS/NF-kappaB/NLRP3/GSDMD signal axis in non-small cell lung cancer. Cancers (Basel) 12(1):193. https://doi.org/10.3390/cancers12010193
Article PubMed CAS Google Scholar
Huang Q et al (2023) High‑throughput screening identification of a small‑molecule compound that induces ferroptosis and attenuates the invasion and migration of hepatocellular carcinoma cells by targeting the STAT3/GPX4 axis. Int J Oncol 62(3). https://doi.org/10.3892/ijo.2023.5490
Luo Z et al (2023) Polyphyllin VI screened from Chonglou by cell membrane immobilized chromatography relieves inflammatory pain by inhibiting inflammation and normalizing the expression of P2X(3) purinoceptor. Front Pharmacol 14:1117762. https://doi.org/10.3389/fphar.2023.1117762
Article PubMed PubMed Central CAS Google Scholar
Ritchie ME et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007
Article PubMed PubMed Central CAS Google Scholar
Ji RR, Chamessian A, Zhang YQ (2016) Pain regulation by non-neuronal cells and inflammation. Science 354(6312):572–577. https://doi.org/10.1126/science.aaf8924
Article PubMed PubMed Central CAS Google Scholar
Yang JX et al (2022) Potential neuroimmune interaction in chronic pain: a review on immune cells in peripheral and central sensitization. Front Pain Res (Lausanne) 3:946846. https://doi.org/10.3389/fpain.2022.946846
Donnelly CR et al (2020) Central nervous system targets: glial cell mechanisms in chronic pain. Neurotherapeutics 17(3):846–860. https://doi.org/10.1007/s13311-020-00905-7
Article PubMed PubMed Central Google Scholar
Fang XX et al (2023) Inflammation in pathogenesis of chronic pain: Foe and friend. Mol Pain 19:17448069231178176. https://doi.org/10.1177/17448069231178176
Article PubMed PubMed Central Google Scholar
Sommer C, Leinders M, Uceyler N (2018) Inflammation in the pathophysiology of neuropathic pain. Pain 159(3):595–602. https://doi.org/10.1097/j.pain.0000000000001122
Article PubMed CAS Google Scholar
Kong YF et al (2021) CXCL10/CXCR3 signaling in the DRG exacerbates neuropathic pain in mice. Neurosci Bull 37(3):339–352. https://doi.org/10.1007/s12264-020-00608-1
Article PubMed CAS Google Scholar
Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis. Nat Med 16(11):1248–1257. https://doi.org/10.1038/nm.2235
Article PubMed PubMed Central CAS Google Scholar
Neves AF et al (2020) Peripheral inflammatory hyperalgesia depends on P2X7 receptors in satellite glial cells. Front Physiol 11:473. https://doi.org/10.3389/fphys.2020.00473
Article PubMed PubMed Central Google Scholar
Hu X et al (2020) Inhibition of P2X7R in the amygdala ameliorates symptoms of neuropathic pain after spared nerve injury in rats. Brain Behav Immun 88:507–514. https://doi.org/10.1016/j.bbi.2020.04.030
Comments (0)