Grossman SA, Ye X, Lesser G, Sloan A, Carraway H, Desideri S, et al. Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin Cancer Res. 2011;17(16):5473–80. https://doi.org/10.1158/1078-0432.Ccr-11-0774.
Article CAS PubMed PubMed Central Google Scholar
Valero C, Lee M, Hoen D, Weiss K, Kelly DW, Adusumilli PS, et al. Pretreatment neutrophil-to-lymphocyte ratio and mutational burden as biomarkers of tumor response to immune checkpoint inhibitors. Nat Commun. 2021;12(1):729. https://doi.org/10.1038/s41467-021-20935-9.
Article CAS PubMed PubMed Central Google Scholar
Bagley SJ, Kothari S, Aggarwal C, Bauml JM, Alley EW, Evans TL, et al. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer. 2017;106:1–7. https://doi.org/10.1016/j.lungcan.2017.01.013.
Howard R, Kanetsky PA, Egan KM. Exploring the prognostic value of the neutrophil-to-lymphocyte ratio in cancer. Sci Rep. 2019;9(1):19673. https://doi.org/10.1038/s41598-019-56218-z.
Article CAS PubMed PubMed Central Google Scholar
Clavreul A, Lemée JM, Soulard G, Rousseau A, Menei P. A simple preoperative blood count to stratify prognosis in isocitrate dehydrogenase-wildtype glioblastoma patients treated with radiotherapy plus concomitant and adjuvant temozolomide. Cancers (Basel). 2021;13(22). https://doi.org/10.3390/cancers13225778.
Marini A, Dobran M, Aiudi D, Pesaresi A, di Somma LGM, Iacoangeli M. Pre-operative hematological markers as predictive factors for overall survival and progression free survival in glioblastomas. Clin Neurol Neurosurg. 2020;197:106162. https://doi.org/10.1016/j.clineuro.2020.106162.
Stoyanov GS, Lyutfi E, Georgieva R, Dzhenkov DL, Petkova L, Ivanov BD, et al. The role of preoperative neutrophil, platelet, and monocyte to lymphocyte ratios as independent prognostic factors for patient survival in WHO 2021 glioblastoma: a single-center retrospective study. Cureus. 2022;14(6):e25801. https://doi.org/10.7759/cureus.25801.
Article PubMed PubMed Central Google Scholar
Cote DJ, Creed JH, Samanic CM, Gerke TA, Stampfer MJ, Smith-Warner SA, et al. A prospective study of inflammatory biomarkers and growth factors and risk of glioma in the UK Biobank. Cancer Epidemiol. 2021;75:102043. https://doi.org/10.1016/j.canep.2021.102043.
Article PubMed PubMed Central Google Scholar
Guo X, Jiao H, Zhang T, Zhang Y. Pre-treatment and preoperative neutrophil-to-lymphocyte ratio predicts prognostic value of glioblastoma: a meta-analysis. Brain Sci. 2022;12(5). https://doi.org/10.3390/brainsci12050675.
Gomes Dos Santos A, de Carvalho RF, de Morais A, Silva TM, Baylão VMR, Azevedo M, et al. Role of neutrophil-lymphocyte ratio as a predictive factor of glioma tumor grade: a systematic review. Crit Rev Oncol Hematol. 2021;163:103372. https://doi.org/10.1016/j.critrevonc.2021.103372.
Yang C, Wen HB, Zhao YH, Huang WH, Wang ZF, Li ZQ. Systemic inflammatory indicators as prognosticators in glioblastoma patients: a comprehensive meta-analysis. Front Neurol. 2020;11:580101. https://doi.org/10.3389/fneur.2020.580101.
Article PubMed PubMed Central Google Scholar
Bonilla DL, Reinin G, Chua E. Full spectrum flow cytometry as a powerful technology for cancer immunotherapy research. Front Mol Biosci. 2020;7:612801. https://doi.org/10.3389/fmolb.2020.612801.
Article CAS PubMed Google Scholar
van der Pan K, Khatri I, de Jager AL, Louis A, Kassem S, Naber BAE, et al. Performance of spectral flow cytometry and mass cytometry for the study of innate myeloid cell populations. Front Immunol. 2023;14:1191992. https://doi.org/10.3389/fimmu.2023.1191992.
Article CAS PubMed PubMed Central Google Scholar
Park LM, Lannigan J, Jaimes MC. OMIP-069: Forty-color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytometry A. 2020;97(10):1044–51. https://doi.org/10.1002/cyto.a.24213.
Article CAS PubMed PubMed Central Google Scholar
Jaimes MC, Leipold M, Kraker G, Amir EA, Maecker H, Lannigan J. Full spectrum flow cytometry and mass cytometry: a 32-marker panel comparison. Cytometry A. 2022;101(11):942–59. https://doi.org/10.1002/cyto.a.24565.
Article CAS PubMed PubMed Central Google Scholar
Majzner RG, Ramakrishna S, Yeom KW, Patel S, Chinnasamy H, Schultz LM, et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature. 2022;603(7903):934–41. https://doi.org/10.1038/s41586-022-04489-4.
Article CAS PubMed PubMed Central Google Scholar
Das A, Tabori U, Sambira Nahum LC, Collins NB, Deyell R, Dvir R, et al. Efficacy of nivolumab in pediatric cancers with high mutation burden and mismatch-repair deficiency. Clin Cancer Res. 2023. https://doi.org/10.1158/1078-0432.Ccr-23-0411.
Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25(3):477–86. https://doi.org/10.1038/s41591-018-0337-7.
Article CAS PubMed PubMed Central Google Scholar
Ghosh S, Huang J, Inkman M, Zhang J, Thotala S, Tikhonova E, et al. Radiation-induced circulating myeloid-derived suppressor cells induce systemic lymphopenia after chemoradiotherapy in patients with glioblastoma. Sci Transl Med. 2023;15(680):eabn6758. https://doi.org/10.1126/scitranslmed.abn6758.
Article CAS PubMed PubMed Central Google Scholar
Del Bianco P, Pinton L, Magri S, Canè S, Masetto E, Basso D, et al. Myeloid diagnostic and prognostic markers of immune suppression in the blood of glioma patients. Front Immunol. 2021;12:809826. https://doi.org/10.3389/fimmu.2021.809826.
Article CAS PubMed Google Scholar
Salas LA, Zhang Z, Koestler DC, Butler RA, Hansen HM, Molinaro AM, et al. Enhanced cell deconvolution of peripheral blood using DNA methylation for high-resolution immune profiling. Nat Commun. 2022;13(1):761. https://doi.org/10.1038/s41467-021-27864-7.
Article CAS PubMed PubMed Central Google Scholar
Molinaro AM, Wiencke JK, Warrier G, Koestler DC, Chunduru P, Lee JY, et al. Interactions of age and blood immune factors and noninvasive prediction of glioma survival. J Natl Cancer Inst. 2022;114(3):446–57. https://doi.org/10.1093/jnci/djab195.
Article CAS PubMed Google Scholar
Wiencke JK, Molinaro AM, Warrier G, Rice T, Clarke J, Taylor JW, et al. DNA methylation as a pharmacodynamic marker of glucocorticoid response and glioma survival. Nat Commun. 2022;13(1):5505. https://doi.org/10.1038/s41467-022-33215-x.
Article CAS PubMed PubMed Central Google Scholar
Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A. 2005;102(45):16368–73. https://doi.org/10.1073/pnas.0507904102.
Article CAS PubMed PubMed Central Google Scholar
Gobbini E, Swalduz A, Giaj Levra M, Ortiz-Cuaran S, Toffart A-C, Pérol M, et al. Implementing ctDNA analysis in the clinic: challenges and opportunities in non-small cell lung cancer. Cancers. 2020;12(11):3112.
Article CAS PubMed PubMed Central Google Scholar
Leighl NB, Page RD, Raymond VM, Daniel DB, Divers SG, Reckamp KL, et al. Clinical utility of comprehensive cell-free DNA analysis to identify genomic biomarkers in patients with newly diagnosed metastatic non-small cell lung cancer. Clin Cancer Res. 2019;25(15):4691–700. https://doi.org/10.1158/1078-0432.Ccr-19-0624.
Article CAS PubMed Google Scholar
Bagley SJ, Nabavizadeh SA, Mays JJ, Till JE, Ware JB, Levy S, et al. Clinical utility of plasma cell-free DNA in adult patients with newly diagnosed glioblastoma: a pilot prospective study. Clin Cancer Res. 2020;26(2):397–407. https://doi.org/10.1158/1078-0432.Ccr-19-2533.
Article CAS PubMed Google Scholar
Bagley SJ, Till J, Abdalla A, Sangha HK, Yee SS, Freedman J, et al. Association of plasma cell-free DNA with survival in patients with IDH wild-type glioblastoma. Neuro-Oncology. Advances. 2021;3(1). https://doi.org/10.1093/noajnl/vdab011.
Fontanilles M, Marguet F, Beaussire L, Magne N, Pépin LF, Alexandru C, et al. Cell-free DNA and circulating TERT promoter mutation for disease monitoring in newly-diagnosed glioblastoma. Acta Neuropathol Commun. 2020;8(1):179. https://doi.org/10.1186/s40478-020-01057-7.
Article CAS PubMed PubMed Central Google Scholar
Izquierdo E, Proszek P, Pericoli G, Temelso S, Clarke M, Carvalho DM, et al. Droplet digital PCR-based detection of circulating tumor DNA from pediatric high grade and diffuse midline glioma patients. Neurooncol Adv. 2021;3(1):vdab013. https://doi.org/10.1093/noajnl/vdab013.
Article PubMed PubMed Central Google Scholar
Mouliere F, Smith CG, Heider K, Su J, van der Pol Y, Thompson M, et al. Fragmentation patterns and personalized sequencing of cell-free DNA in urine and plasma of glioma patients. EMBO Mol Med. 2021;13(8):e12881. https://doi.org/10.15252/emmm.202012881.
Article CAS PubMed Google Scholar
Bonner ER, Harrington R, Eze A, Bornhorst M, Kline CN, Gordish-Dressman H, et al. Circulating tumor DNA sequencing provides comprehensive mutation profiling for pediatric central nervous system tumors. npj Precision. Oncology. 2022;6(1):63. https://doi.org/10.1038/s41698-022-00306-3.
Pagès M, Rotem D, Gydush G, Reed S, Rhoades J, Ha G, et al. Liquid biopsy detection of genomic alterations in pediatric brain tumors from cell-free DNA in peripheral blood, CSF, and urine. Neuro-Oncology. 2022;24(8):1352–63. https://doi.org/10.1093/neuonc/noab299. This study represents the largest cohort of pediatric brain tumors to be assessed by liquid biopsy NGS.
Comments (0)