Effects of overground gait training assisted by a wearable exoskeleton in patients with Parkinson’s disease

Galna B, Lord S, Burn DJ, Rochester L. Progression of gait dysfunction in incident Parkinson’s disease: impact of medication and phenotype. Mov Disord. 2014;30(3):359–67.

Article  PubMed  Google Scholar 

Grabli D, Karachi C, Welter ML, Lau B, Hirsch EC, Vidailhet M, et al. Normal and pathological gait: what we learn from Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2012;83(10):979–85.

Article  PubMed  Google Scholar 

Creaby MW, Cole MH. Gait characteristics and falls in Parkinson’s disease: A systematic review and meta-analysis. Parkinsonism Relat Disord. 2018;57:1–8.

Article  PubMed  Google Scholar 

Kalilani L, Asgharnejad M, Palokangas T, Durgin T. Comparing the incidence of falls/fractures in Parkinson’s disease patients in the US population. PLoS ONE. 2016;11(9).

Article  PubMed  PubMed Central  Google Scholar 

Bloem BR, Grimbergen YAM, Cramer M, Willemsen M, Zwinderman AH. Prospective assessment of falls in Parkinson’s disease. J Neurol. 2001;248(11):950–8.

Article  CAS  PubMed  Google Scholar 

Osborne JA, Botkin R, Colon-Semenza C, DeAngelis TR, Gallardo OG, Kosakowski H, et al. Physical therapist management of Parkinson disease: a clinical practice guideline from the American physical therapy association. Phys Ther. 2022;102(4):pzab302.

Article  PubMed  Google Scholar 

Lo AC, Chang VC, Gianfrancesco MA, Friedman JH, Patterson TS, Benedicto DF. Reduction of freezing of gait in Parkinson’s disease by repetitive robot-assisted treadmill training: a pilot study. J Neuroeng Rehabil. 2010;7(1):51.

Article  PubMed  PubMed Central  Google Scholar 

Ustinova K, Chernikova L, Bilimenko A, Telenkov A, Epstein N. Effect of robotic locomotor training in an individual with Parkinson’s disease: a case report. Disabil Rehabil Assist Technol. 2011;6(1):77–85.

Article  PubMed  Google Scholar 

Carda S, Invernizzi M, Baricich A, Comi C, Croquelois A, Cisari C. Robotic gait training is not superior to conventional treadmill training in Parkinson disease: a single-blind randomized controlled trial. Neurorehabil Neural Repair. 2012;26(9):1027–34.

Article  PubMed  Google Scholar 

Barbe MT, Cepuran F, Amarell M, Schoenau E, Timmermann L. Long-term effect of robot-assisted treadmill walking reduces freezing of gait in Parkinson’s disease patients: a pilot study. J Neurol. 2013;260(1):296–8.

Article  PubMed  Google Scholar 

Paker N, Bugdayci D, Goksenoglu G, Sen A, Kesiktas N. Effects of robotic treadmill training on functional mobility, walking capacity, motor symptoms and quality of life in ambulatory patients with Parkinson’s disease: a preliminary prospective longitudinal study. NeuroRehabilitation. 2013;33(2):323–8.

Article  PubMed  Google Scholar 

Nardo A, Anasetti F, Servello D, Porta M. Quantitative gait analysis in patients with Parkinson treated with deep brain stimulation: the effects of a robotic gait training. NeuroRehabilitation. 2014;35(4):779–88.

Article  PubMed  Google Scholar 

Picelli A, Melotti C, Origano F, Waldner A, Fiaschi A, Santilli V, et al. Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial. Neurorehabil Neural Repair. 2012;26(4):353–61.

Article  PubMed  Google Scholar 

Picelli A, Melotti C, Origano F, Waldner A, Gimigliano R, Smania N. Does robotic gait training improve balance in Parkinson’s disease? A randomized controlled trial. Parkinsonism Relat Disord. 2012;18(8):990–3.

Article  PubMed  Google Scholar 

Sale P, Pandis MFD, Pera DL, Sova I, Cimolin V, Ancillao A, et al. Robot-assisted walking training for individuals with Parkinson’s disease: a pilot randomized controlled trial. BMC Neurol. 2013;13(1):50.

Article  PubMed  PubMed Central  Google Scholar 

Picelli A, Melotti C, Origano F, Neri R, Waldner A, Smania N. Robot-assisted gait training versus equal intensity treadmill training in patients with mild to moderate Parkinson’s disease: A randomized controlled trial. Parkinsonism Relat Disord. 2013;19(6):605–10.

Article  PubMed  Google Scholar 

Galli M, Cimolin V, De Pandis MF, Le Pera D, Sova I, Albertini G, et al. Robot-assisted gait training versus treadmill training in patients with Parkinson’s disease: a kinematic evaluation with gait profile score. Funct Neurol. 2016;31(3):163–70.

CAS  PubMed  PubMed Central  Google Scholar 

Andrenelli E, Capecci M, Di Biagio L, Pepa L, Lucarelli L, Spagnuolo C, et al. Improving gait function and sensorimotor brain plasticity through robotic gait training with G-EO system in Parkinson’s disease. Ann Phys Rehabil Med. 2018;61(Supplement):e79–80.

Article  Google Scholar 

Capecci M, Pournajaf S, Galafate D, Sale P, Pera DL, Goffredo M, et al. Clinical effects of robot-assisted gait training and treadmill training for Parkinson’s disease. A randomized controlled trial. Ann Phys Rehabil Med. 2019;62(5):303–12.

Article  PubMed  Google Scholar 

Smania N, Picelli A, Geroin C, Munari D, Waldner A, Gandolfi M. Robot-assisted gait training in patients with Parkinson’s disease. Neurodegen Dis Manage. 2013;3(4):321–30.

Article  Google Scholar 

Picelli A, Capecci M, Filippetti M, Varalta V, Fonte C, Di Censo R, et al. Effects of robot-assisted gait training on postural instability in Parkinson’s disease: a systematic review. Eur J Phys Rehabil Med. 2021;57(3):472–7.

Article  PubMed  Google Scholar 

Kawashima N, Hasegawa K, Iijima M, Nagami K, Makimura T, Kumon A, et al. Efficacy of wearable device gait training on Parkinson’s disease: a randomized controlled open-label pilot study. Intern Med. 2022;61(17):2573–80.

Article  PubMed  PubMed Central  Google Scholar 

Gryfe P, Sexton A, McGibbon CA. Using gait robotics to improve symptoms of Parkinson’s disease: an open-label, pilot randomized controlled trial. Eur J Phys Rehabil Med. 2022;58(5):723–37.

Article  PubMed  PubMed Central  Google Scholar 

Shi L, Duan F, Yang Y, Sun Z. The effect of treadmill walking on gait and upper trunk through linear and nonlinear analysis methods. Sensors. 2019;19(9):2204.

Article  PubMed  PubMed Central  Google Scholar 

Bollens B, Crevecoeur F, Detrembleur C, Warlop T, Lejeune TM. Variability of human gait: effect of backward walking and dual-tasking on the presence of long-range autocorrelations. Ann Biomed Eng. 2013;42(4):742–50.

Article  PubMed  Google Scholar 

Delignières D, Marmelat V. Fractal fluctuations and complexity: current debates and future challenges. Crit Rev Biomed Eng. 2012;40(6):485–500.

Article  PubMed  Google Scholar 

Delignières D, Marmelat V. Degeneracy and long-range correlations. Chaos. 2013;23(4).

Article  PubMed  Google Scholar 

Terrier P, Dèriaz O. Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking. J NeuroEng Rehabil. 2011;8(1):12.

Article  PubMed  PubMed Central  Google Scholar 

Dingwell JB, John J, Cusumano JP. Do humans optimally exploit redundancy to control step variability in walking? PLoS Comput Biol. 2010;6(7).

Article  PubMed  PubMed Central  Google Scholar 

Dingwell JB, Bohnsack-McLagan NK, Cusumano JP. Humans control stride-to-stride stepping movements differently for walking and running, independent of speed. J Biomech. 2018;76:144–51.

Article  PubMed  Google Scholar 

Herman T, Giladi N, Gurevich T, Hausdorff JM. Gait instability and fractal dynamics of older adults with a "cautious" gait: why do certain older adults walk fearfully? Gait Posture. 2005;21(2):178–85.

Article  CAS  PubMed  Google Scholar 

Warlop T, Detrembleur C, Bollens B, Stoquart G, Crevecoeur F, Jeanjean A, et al. Temporal organization of stride duration variability as a marker of gait instability in Parkinson’s disease. J Rehabil Med. 2016;48(10):865–71.

Article  PubMed  Google Scholar 

Hausdorff JM. Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos. 2009;19(2).

Article  PubMed  PubMed Central  Google Scholar 

Warlop T, Detrembleur C, Stoquart G, Lejeune T, Jeanjean A. Gait complexity and regularity are differently modulated by treadmill walking in Parkinson’s disease and healthy population. Front Physiol. 2018;9:68.

Article  PubMed  PubMed Central  Google Scholar 

Hollman JH, Von Arb HM, Budreck AM, Muehlemann A, Ness DK. Treadmill walking alters stride time dynamics in Parkinson’s disease. Gait Posture. 2020;77:195–200.

Article  PubMed  Google Scholar 

Otlet V, Ronsse R. Predicting the effects of oscillator-based assistance on stride-to-stride variability of Parkinsonian walkers. In: 2022 International Conference on Robotics and Automation (ICRA). Philadelphia, PA, USA; 2022. IEEE. p. 8083–89.

Vandamme C, Otlet V, Ronsse R, Crevecoeur F. Model of gait control in Parkinson’s disease and prediction of robotic assistance. IEEE Trans Neural Syst Rehabil Eng. 2023;31:1374–83.

Article  Google Scholar 

Otlet V, Ronsse R. Adaptive walking assistance does not impact long-range stride-to-stride autocorrelations in healthy people. J Neurophysiol. 2023;130(2):417–26.

Article  PubMed  Google Scholar 

Rizek P, Kumar N, Jog MS. An update on the diagnosis and treatment of Parkinson disease. Can Med Assoc J. 2016;188(16):1157–65.

Article  Google Scholar 

Ronsse R, Lenzi T, Vitiello N, Koopman B, van Asseldonk E, De Rossi SMM, et al. Oscillator-based assistance of cyclical movements: model-based and model-free approaches. Med Biol Eng Comput. 2011;49(10):1173–85.

Article 

Comments (0)

No login
gif