1.
Sanderson, WC, Scherbov, S. Average remaining lifetimes can increase as human populations age. Nature. 2005;435:811-813. doi:
10.1038/nature03593 Google Scholar |
Crossref |
Medline |
ISI2.
Life expectancy . World Health Organization. 2020. Updated 2020. Accessed September 7, 2020.
https://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends_text/en/ Google Scholar3.
Franceschi, C, Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69:S4-S9. doi:
10.1093/gerona/glu057 Google Scholar |
Crossref |
Medline |
ISI4.
Triposkiadis, F, Xanthopoulos, A, Butler, J. Cardiovascular aging and heart failure. J Am Coll Cardiol. 2019;74:804. doi:
10.1016/j.jacc.2019.06.053 Google Scholar |
Crossref |
Medline5.
McGeer, PL, McGeer, EG. Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci. 2004;1035:104-116. doi:
10.1196/annals.1332.007 Google Scholar |
Crossref |
Medline |
ISI6.
Deleidi, M, Jäggle, M, Rubino, G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Review. Front Neurosci. 2015;9:172. doi:
10.3389/fnins.2015.00172 Google Scholar |
Crossref |
Medline7.
Mundy, GR. Osteoporosis and inflammation. Nutr Rev. 2007;65:S147-S151. doi:
10.1111/j.1753-4887.2007.tb00353.x Google Scholar |
Crossref |
Medline |
ISI8.
Bottazzi, B, Riboli, E, Mantovani, A. Aging, inflammation and cancer. Semin Immunol. 2018;40:74-82. doi:
10.1016/j.smim.2018.10.011 Google Scholar |
Crossref |
Medline9.
North, BJ, Sinclair, DA. The intersection between aging and cardiovascular disease. Circ Res. 2012;110:1097-1108. doi:
10.1161/circresaha.111.246876 Google Scholar |
Crossref |
Medline |
ISI10.
Kowalska, M, Owecki, M, Prendecki, M, et al. Aging and neurological diseases. In: Dorszewska, J (ed.) Senescence - Physiology or Pathology. 2017:63-94.
Google Scholar |
Crossref11.
Finkel, T, Serrano, M, Blasco, MA. The common biology of cancer and ageing. Nature. 2007;448:767-774. doi:
10.1038/nature05985 Google Scholar |
Crossref |
Medline |
ISI12.
Li, G, Thabane, L, Papaioannou, A, Ioannidis, G, Levine, MAH, Adachi, JD. An overview of osteoporosis and frailty in the elderly. BMC Musculoskelet Disord. 2017;18:46. doi:
10.1186/s12891-017-1403-x Google Scholar |
Crossref |
Medline13.
Sorgdrager, FJH, Naudé, PJW, Kema, IP, Nollen, EA, Deyn, PPD. Tryptophan metabolism in inflammaging: from biomarker to therapeutic target. Front Immunol. 2019;10:2565-2565. doi:
10.3389/fimmu.2019.02565 Google Scholar |
Crossref |
Medline14.
Larsen, GL, Henson, PM. Mediators of inflammation. Annu Rev Immunol. 1983;1:335-359. doi:
10.1146/annurev.iy.01.040183.002003 Google Scholar |
Crossref |
Medline |
ISI15.
Chen, L, Deng, H, Cui, H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9:7204-7218. doi:
10.18632/oncotarget.23208 Google Scholar |
Crossref |
Medline16.
Franceschi, C, Garagnani, P, Parini, P, Giuliani, C, Santoro, A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14:576-590. doi:
10.1038/s41574-018-0059-4 Google Scholar |
Crossref |
Medline17.
Höglund, E, Øverli, Ø, Winberg, S. Tryptophan metabolic pathways and brain serotonergic activity: a comparative review. Front Endocrinol (Lausanne). 2019;10:158-158. doi:
10.3389/fendo.2019.00158 Google Scholar |
Crossref |
Medline18.
Agus, A, Planchais, J, Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23:716-724. doi:
10.1016/j.chom.2018.05.003 Google Scholar |
Crossref |
Medline19.
van der Goot, AT, Nollen, EAA. Tryptophan metabolism: entering the field of aging and age-related pathologies. Trends Mol Med. 2013;19:336-344. doi:
10.1016/j.molmed.2013.02.007 Google Scholar |
Crossref |
Medline |
ISI20.
Song, P, Ramprasath, T, Wang, H, Zou, MH. Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases. Cell Mol Life Sci. 2017;74:2899-2916. doi:
10.1007/s00018-017-2504-2 Google Scholar |
Crossref |
Medline21.
Maddison, DC, Giorgini, F. The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol. 2015;40:134-141. doi:
10.1016/j.semcdb.2015.03.002 Google Scholar |
Crossref |
Medline22.
Cervenka, I, Agudelo, LZ, Ruas, JL. Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017;357:eaaf9794. doi:
10.1126/science.aaf9794 Google Scholar |
Crossref |
Medline23.
Pedraz-Petrozzi, B, Elyamany, O, Rummel, C, Mulert, C. Effects of inflammation on the kynurenine pathway in schizophrenia — a systematic review. J Neuroinflammation. 2020;17:56. doi:
10.1186/s12974-020-1721-z Google Scholar |
Crossref |
Medline24.
Huang, Y-S, Ogbechi, J, Clanchy, FI, Williams, RO, Stone, TW. IDO and kynurenine metabolites in peripheral and CNS disorders. Front Immunol. 2020;11:388-388. doi:
10.3389/fimmu.2020.00388 Google Scholar |
Crossref |
Medline25.
Platten, M, Nollen, EAA, Röhrig, UF, Fallarino, F, Opitz, CA. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov. 2019;18:379-401. doi:
10.1038/s41573-019-0016-5 Google Scholar |
Crossref |
Medline26.
Lanser, L, Kink, P, Egger, EM, et al. Inflammation-induced tryptophan breakdown is related with anemia, fatigue, and depression in cancer. Front Immunol. 2020;11:249. doi:
10.3389/fimmu.2020.00249 Google Scholar |
Crossref |
Medline27.
Heilman, PL, Wang, EW, Lewis, MM, et al. Tryptophan metabolites are associated with symptoms and nigral pathology in Parkinson’s disease. Mov Disord. 2020. doi:
10.1002/mds.28202 Google Scholar |
Crossref28.
Kim, S, Miller, BJ, Stefanek, ME, Miller, AH. Inflammation-induced activation of the indoleamine 2,3-dioxygenase pathway: relevance to cancer-related fatigue. Cancer. 2015;121:2129-2136. doi:
10.1002/cncr.29302 Google Scholar |
Crossref |
Medline |
ISI29.
Lavie Carl, J, Ozemek, C, Carbone, S, Katzmarzyk Peter, T, Blair Steven, N. Sedentary behavior, exercise, and cardiovascular health. Circ Res. 2019;124:799-815. doi:
10.1161/CIRCRESAHA.118.312669 Google Scholar |
Crossref |
Medline30.
Handschin, C, Spiegelman, BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature. 2008;454:463-469. doi:
10.1038/nature07206 Google Scholar |
Crossref |
Medline |
ISI31.
Burnet, K, Kelsch, E, Zieff, G, Moore, JB, Stoner, L. How fitting is F.I.T.T.? A perspective on a transition from the sole use of frequency, intensity, time, and type in exercise prescription. Physiol Behav. 2019;199:33-34. doi:
10.1016/j.physbeh.2018.11.007 Google Scholar |
Crossref |
Medline32.
Mackinnon, LT. Chronic exercise training effects on immune function. Med Sci Sports Exerc. 2000;32:S369-S376. doi:
10.1097/00005768-200007001-00001 Google Scholar |
Crossref |
Medline |
ISI33.
Walsh, NP, Gleeson, M, Shephard, RJ, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6-63.
Google Scholar |
Medline |
ISI34.
Joisten, N, Kummerhoff, F, Koliamitra, C, et al. Exercise and the kynurenine pathway: current state of knowledge and results from a randomized cross-over study comparing acute effects of endurance and resistance training. Exerc Immunol Rev. 2020;26:24-42.
Google Scholar |
Medline35.
Metcalfe, AJ, Koliamitra, C, Javelle, F, Bloch, W, Zimmer, P. Acute and chronic effects of exercise on the kynurenine pathway in humans – A brief review and future perspectives. Physiol Behav. 2018;194:583-587. doi:
10.1016/j.physbeh.2018.07.015 Google Scholar |
Crossref |
Medline36.
Sterne, JAC, Savović, J, Page, MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.
Google Scholar37.
Sterne, JAC, Hernán, MA, Reeves, BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ. 2016;355:i4919. doi:
10.1136/bmj.i4919 Google Scholar |
Crossref38.
Mudry, JM, Alm, PS, Erhardt, S, et al. Direct effects of exercise on kynurenine metabolism in people with normal glucose tolerance or type 2 diabetes. Diabetes Metab Res Rev. 2016;32:754-761. doi:
10.1002/dmrr.2798 Google Scholar |
Crossref |
Medline39.
Baek, IH, Lee, T, Song, M, Goo, BO. Effect of circuit class training for eight weeks on changes in ratios of F-Trp/BCAAs and depression in people with poststroke depression. J Phys Ther Sci. 2014;26:243-246. doi:
10.1589/jpts.26.243 Google Scholar |
Crossref |
Medline40.
Hennings, A, Schwarz, MJ, Riemer, S, Stapf, TM, Selberdinger, VB, Rief, W. Exercise affects symptom severity but not biological measures in depression and somatization - results on IL-6, neopterin, tryptophan, kynurenine and 5-HIAA. Psychiatry Res. 2013;210:925-933. doi:
10.1016/j.psychres.2013.09.018 Google Scholar |
Crossref |
Medline41.
Herrstedt, A, Bay, ML, Simonsen, C, et al. Exercise-mediated improvement of depression in patients with gastro-esophageal junction cancer is linked to kynurenine metabolism. Acta Oncol. 2019;58:579-587. doi:
10.1080/0284186x.2018.1558371 Google Scholar |
Crossref |
Medline42.
Pal, A, Zimmer, P, Clauss, D, et al. Resistance exercise modulates kynurenine pathway in pancreatic cancer patients. Int J Sports Med. 2021;42:33-40. doi:
10.1055/a-1186-1009 Google Scholar |
Crossref |
Medline43.
Zimmer, P, Schmidt, ME, Prentzell, MT, et al. Resistance exercise reduces kynurenine pathway metabolites in breast cancer patients undergoing radiotherapy. Front Oncol. 2019;9:962. doi:
10.3389/fonc.2019.00962 Google Scholar |
Crossref |
Medline44.
Michailidis, Y, Jamurtas, AZ, Nikolaidis, MG, et al. Sampling time is crucial for measurement of aerobic exercise-induced oxidative stress. Med Sci Sports Exerc 2007;39:1107-1113.
Google Scholar |
Crossref |
Medline45.
Gonçalves, CAM, Dantas, PMS, Dos Santos, IK, et al. Effect of acute and chronic aerobic exercise on immunological markers: a systematic review. Front Physiol. 2019;10:1602. doi:
10.3389/fphys.2019.01602 Google Scholar |
Crossref46.
Beck, AT, Ward, CH, Mendelson, M, et al. Beck Depression Inventory [Database record]. APA PsycTests; 1961.
Google Scholar47.
Rief, W, Hiller, W. A new approach to the assessment of the treatment effects of somatoform disorders. Psychosomatics. 2003;44:492-498. doi:
Comments (0)