1.
Palego, L, Betti, L, Rossi, A, Giannaccini, G. Tryptophan biochemistry: structural, nutritional, metabolic, and medical aspects in humans. J Amino Acids. 2016;2016:8952520.
Google Scholar |
Crossref |
Medline2.
Guillemin, GJ. Neurodegenerative diseases: tryptophan metabolism. In: Binder, MD, Hirokawa, N, Windhorst, U eds. Encyclopedia of Neuroscience. Springer; 2009;2620-2623.
Google Scholar |
Crossref3.
Tan, L, Yu, JT, Tan, L. The kynurenine pathway in neurodegenerative diseases: mechanistic and therapeutic considerations. J Neurol Sci. 2012;323:1-8.
Google Scholar |
Crossref |
Medline |
ISI4.
Huang, JY, Butler, LM, Midttun, Ø, et al. A prospective evaluation of serum kynurenine metabolites and risk of pancreatic cancer. PLoS One. 2018;13:e0196465.
Google Scholar5.
Taleb, S. Tryptophan Dietary impacts gut barrier and metabolic diseases. Front Immunol. 2019;10:2113.
Google Scholar |
Crossref |
Medline6.
Badawy, AA. Tryptophan metabolism: a versatile area providing multiple targets for pharmacological intervention. Egypt J Basic Clin Pharmacol. 2019;9:30. doi:
10.32527/2019/101415 Google Scholar |
Crossref7.
Sakurai, M, Yamamoto, Y, Kanayama, N, et al. Serum metabolic profiles of the tryptophan-kynurenine pathway in the high risk subjects of major depressive disorder. Sci Rep. 2020;10:1961.
Google Scholar |
Crossref |
Medline8.
Oluwagbemigun, K, Anesi, A, Ulaszewska, M, et al. Longitudinal relationship of amino acids and indole metabolites with long-term body mass index and cardiometabolic risk markers in young individuals. Sci Rep. 2020;10:6399.
Google Scholar |
Crossref |
Medline9.
Ghiboub, M, Verburgt, CM, Sovran, B, Benninga, MA, de Jonge, WJ, Van Limbergen, JE. Nutritional therapy to modulate tryptophan metabolism and aryl hydrocarbon-receptor signaling activation in human diseases. Nutrients. 2020;12:2846.
Google Scholar |
Crossref10.
Agus, A, Clément, K, Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021;70:1174-1182.
Google Scholar |
Crossref |
Medline11.
Borghi, M, Puccetti, M, Pariano, M, et al. Tryptophan as a central hub for host/microbial symbiosis. Int J Tryptophan Res. 2020;13. doi:10.1177/EFF;EFF;1178646920919755
Google Scholar |
SAGE Journals12.
Li, Y, Hu, N, Yang, D, Oxenkrug, G, Yang, Q. Regulating the balance between the kynurenine and serotonin pathways of tryptophan metabolism. FEBS J. 2017;284:948-966.
Google Scholar |
Crossref |
Medline13.
Li, X, Zhang, Z, Zabed, HM, Yun, J, Zhang, G, Qi, X. An insight into the roles of dietary tryptophan and its metabolites in intestinal inflammation and inflammatory bowel disease. Mol Nutr Food Res. 2021;65:2000461.
Google Scholar |
Crossref14.
Hendrikx, T, Schnabl, B. Indoles: metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. J Intern Med. 2019;286:32-40.
Google Scholar |
Crossref |
Medline15.
Wyatt, M, Greathouse, KL. Targeting dietary and microbial tryptophan-indole metabolism as therapeutic approaches to colon cancer. Nutrients. 2021;13:1189.
Google Scholar |
Crossref |
Medline16.
Dehhaghi, M, Kazemi Shariat Panahi, H, Guillemin, GJ. Microorganisms, tryptophan metabolism, and kynurenine pathway: a complex interconnected loop influencing human health status. Int J Tryptophan Res. 2019;12:1-10.
Google Scholar |
SAGE Journals17.
Ravasz, E, Somera, AL, Mongru, DA, Oltvai, ZN, Barabási, A-L. Hierarchical organization of modularity in metabolic networks. Science. 2002;297:1551-1555.
Google Scholar |
Crossref |
Medline |
ISI18.
Jacunski, A, Tatonetti, NP. Connecting the dots: applications of network medicine in pharmacology and disease. Clin Pharmacol Ther. 2013;94:659-669.
Google Scholar |
Crossref |
Medline19.
Huang, T, Glass, K, Zeleznik, OA, et al. A network analysis of biomarkers for type 2 diabetes. Diabetes. 2019;68:281-290.
Google Scholar |
Crossref |
Medline20.
Tan, VX, Guillemin, GJ. Kynurenine pathway metabolites as biomarkers for amyotrophic lateral sclerosis. Front Neurosci. 2019;13:1013.
Google Scholar |
Crossref |
Medline21.
Günther, J, Fallarino, F, Fuchs, D, Wirthgen, E. Editorial: immunomodulatory roles of tryptophan metabolites in inflammation and cancer. Front Immunol. 2020;11:1497.
Google Scholar |
Crossref |
Medline22.
Perez De Souza, L, Alseekh, S, Brotman, Y, Fernie, AR. Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation. Expert Rev Proteomics. 2020;17:243-255.
Google Scholar |
Crossref |
Medline23.
Scutari, M, Strimmer, K. Introduction to graphical modelling. Handbook of Statistical Systems Biology. John Wiley & Sons, Ltd; 2011:235.
Google Scholar |
Crossref24.
Hevey, D. Network analysis: a brief overview and tutorial. Health Psychol Behav Med. 2018;6:301-328.
Google Scholar |
Crossref |
Medline25.
Oxenkrug, GF, Turski, WA, Zgrajka, W, Weinstock, JV, Summergrad, P. Tryptophan-kynurenine metabolism and insulin resistance in hepatitis C patients. Hepat Res Treat. 2013;2013:149247.
Google Scholar |
Medline26.
de Bie, J, Lim, CK, Guillemin, GJ. Kynurenines, gender and neuroinflammation; showcase schizophrenia. Neurotox Res. 2016;30:285-294.
Google Scholar |
Crossref |
Medline |
ISI27.
Kroke, A, Manz, F, Kersting, M, et al. The DONALD study: history, current status and future perspectives. Eur J Nutr. 2004;43:45-54.
Google Scholar |
Crossref |
Medline28.
Remer, T, Neubert, A, Maser-Gluth, C. Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am J Clin Nutr. 2002;75:561-569.
Google Scholar |
Crossref |
Medline29.
Anesi, A, Rubert, J, Oluwagbemigun, K, et al. Metabolic profiling of human plasma and urine, targeting tryptophan, tyrosine and branched chain amino acid pathways. Metabolites. 2019;9:261. doi:
10.3390/metabo9110261 Google Scholar |
Crossref30.
Lauritzen, SL. Graphical Models. Vol. 17. Oxford University Press; 1996.
Google Scholar31.
Heckerman, D . A tutorial on learning with bayesian networks. In: Holmes, DE, Jain, LC, eds. Innovations in Bayesian Networks. Studies in Computational Intelligence. Vol. 156. Springer; 2008:33-82.
Google Scholar |
Crossref32.
Nagarajan, R, Scutari, M, Lèbre, S. Bayesian Networks in R. Springer-Verlag; 2013.
Google Scholar |
Crossref33.
Rodin, AS, Boerwinkle, E. Mining genetic epidemiology data with Bayesian networks I: Bayesian networks and example application (plasma apoE levels). Bioinformatics. 2005;21:3273-3278.
Google Scholar |
Crossref |
Medline |
ISI34.
Friedman, J, Hastie, T, Tibshirani, R. Glasso: graphical lasso- estimation of Gaussian graphical models. R package version 1; 2014.
Google Scholar35.
Epskamp, S, Rhemtulla, M, Borsboom, D. Generalized network psychometrics: combining network and latent variable models. Psychometrika. 2017;82:904-927.
Google Scholar |
Crossref |
Medline36.
Mittelstrass, K, Ried, JS, Yu, Z, et al. Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genet. 2011;7:e1002215.
Google Scholar |
Crossref |
Medline37.
van Borkulo, CD, Boschloo, L, Kossakowski, J, et al. Comparing network structures on three aspects: a permutation test. Psychol 2017. doi:
10.13140/RG.2.2.29455.38569 Google Scholar |
Crossref |
Medline38.
Scutari, M, Denis, JB. Bayesian Networks: With Examples in R. CRC Press; 2014.
Google Scholar |
Crossref39.
Liu, Z, Malone, B, Yuan, C. Empirical evaluation of scoring functions for Bayesian network model selection. BMC Bioinformatics. 2012;13 Suppl 15:S14.
Google Scholar |
Crossref40.
de Jongh, M, Druzdzel, MJ. A comparison of structural distance measures for causal Bayesian network models. In: Klopotek, M, Przepiorkowski, A, Wierzchon, ST, Trojanowski, K, eds. Recent Advances in Intelligent Information Systems, Challenging Problems of Science, Computer Science Series. Academic Publishing House EXIT; 2009:443-456.
Google Scholar41.
Su, C, Andrew, A, Karagas, MR, Borsuk, ME. Using Bayesian networks to discover relations between genes, environment, and disease. BioData Min. 2013;6:6.
Google Scholar |
Crossref |
Medline42.
Midttun, O, Townsend, MK, Nygård, O, et al. Most blood biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway show adequate preanalytical stability and within-person reproducibility to allow assessment of exposure or nutritional status in healthy women and cardiovascular patients. J Nutr. 2014;144:784-790.
Google Scholar |
Crossref |
Medline43.
Carayol, M, Licaj, I, Achaintre, D, et al. Reliability of serum metabolites over a two-year period: a targeted metabolomic approach in fasting and non-fasting samples from EPIC. PLoS One. 2015;10:e0135437.
Google Scholar |
Crossref |
Medline44.
Russell, WR, Duncan, SH, Scobbie, L, et al. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res. 2013;57:523-535.
Google Scholar |
Crossref |
Medline45.
Wirthgen, E, Hoeflich, A, Rebl, A, Günther, J. Kynurenic acid: the janus-faced role of an immunomodulatory tryptophan metabolite and its link to pathological conditions. Front Immunol. 2018;8:1957. doi:
10.3389/fimmu.2017.01957 Google Scholar |
Crossref |
Medline46.
Hubbard, TD, Murray, IA, Perdew, GH. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab Dispos. 2015;43:1522-1535.
Google Scholar |
Crossref |
Medline47.
Bartolini, B, Corniello, C, Sella, A, Somma, F, Politi, V. The enol tautomer of indole-3-pyruvic acid as a biological switch in stress responses. In: Allegri, G, Costa, CVL, Ragazzi, E, Steinhart, H, Varesio, L, eds. Developments in Tryptophan and Serotonin Metabolism. Springer US; 2003:601-608.
Google Scholar |
Crossref48.
Patten, CL, Blakney, AJ, Coulson, TJ. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol. 2013;39:395-415.
Google Scholar |
Crossref |
Medline49.
Dong, F, Hao, F, Murray, IA, et al. Intestinal microbiota-derived tryptophan metabolites are predictive of Ah receptor activity. Gut Microbes. 2020;12:1-24.
Google Scholar |
Crossref |
Medline50.
Mondanelli, G, Volpi, C. The double life of serotonin metabolites: in the mood for joining neuronal and immune systems. Curr Opin Immunol. 2021;70:1-6.
Google Scholar |
Crossref |
Medline51.
Engin, A, Engin, AB, eds. Preface. In: Tryptophan Metabolism: Implications for Biological Processes, Health and Diseases, Molecular and Integrative Toxicology. Springer International Publishing; 2015:5-6.
Google Scholar52.
Reyes Ocampo, J, Lugo Huitrón, R, González-Esquivel, D, et al. Kynurenines with neuroactive and redox properties: relevance to aging and brain diseases. Oxid Med Cell Longev. 2014;2014:646909.
Google Scholar |
Crossref |
Medline53.
Hestad, KA, Engedal, K, Whist, JE, Farup, PG. The relationships among tryptophan, kynurenine, indoleamine 2,3-dioxygenase, depression, and neuropsychological performance. Front Psychol. 2017;8:1561.
Google Scholar |
Crossref |
Medline54.
Floegel, A, Drogan, D, Wang-Sattler, R, et al. Reliability of serum metabolite concentrations over a 4-month period using a targeted metabolomic approach. PLoS One. 2011;6:e21103.
Google Scholar |
Crossref55.
Comments (0)