Blockade of KAT II Facilitates LTP in Kynurenine 3-Monooxygenase Depleted Mice

1. Guillemin, GJ, Kerr, SJ, Pemberton, LA, et al. IFN-beta1b induces kynurenine pathway metabolism in human macrophages: potential implications for multiple sclerosis treatment. J Interferon Cytokine Res. 2001;21:1097-1101.
Google Scholar | Crossref | Medline | ISI2. Schwarcz, R, Bruno, JP, Muchowski, PJ, Wu, HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13:465-477.
Google Scholar | Crossref | Medline | ISI3. Schwieler, L, Larsson, MK, Skogh, E, et al. Increased levels of IL-6 in the cerebrospinal fluid of patients with chronic schizophrenia—significance for activation of the kynurenine pathway. J Psychiatry Neurosci. 2015;40:126-133.
Google Scholar | Medline | ISI4. Sellgren, CM, Kegel, ME, Bergen, SE, et al. A genome-wide association study of kynurenic acid in cerebrospinal fluid: implications for psychosis and cognitive impairment in bipolar disorder. Mol Psychiatry. 2016;21:1342-1350.
Google Scholar | Crossref | Medline5. Erhardt, S, Schwieler, L, Imbeault, S, Engberg, G. The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology. 2017;112:297-306.
Google Scholar | Crossref | Medline6. Stone, TW, Stoy, N, Darlington, LG. An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol Sci. 2013;34:136-143.
Google Scholar | Crossref | Medline | ISI7. Erhardt, S, Blennow, K, Nordin, C, Skogh, E, Lindström, LH, Engberg, G. Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett. 2001;313:96-98.
Google Scholar | Crossref | Medline | ISI8. Schwarcz, R, Rassoulpour, A, Wu, HQ, Medoff, D, Tamminga, CA, Roberts, RC. Increased cortical kynurenate content in schizophrenia. Biol Psychiatry. 2001;50:521-530.
Google Scholar | Crossref | Medline | ISI9. Nilsson, LK, Linderholm, KR, Engberg, G, et al. Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr Res. 2005;80:315-322.
Google Scholar | Crossref | Medline | ISI10. Olsson, SK, Samuelsson, M, Saetre, P, et al. Elevated levels of kynurenic acid in the cerebrospinal fluid of patients with bipolar disorder. J Psychiatry Neurosci. 2010;35:195-199.
Google Scholar | Crossref | Medline | ISI11. Sathyasaikumar, KV, Stachowski, EK, Wonodi, I, et al. Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr Bull. 2011;37:1147-1156.
Google Scholar | Crossref | Medline | ISI12. Linderholm, KR, Skogh, E, Olsson, SK, et al. Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull. 2012;38:426-432.
Google Scholar | Crossref | Medline | ISI13. Olsson, SK, Sellgren, C, Engberg, G, Landén, M, Erhardt, S. Cerebrospinal fluid kynurenic acid is associated with manic and psychotic features in patients with bipolar I disorder. Bipolar Disord. 2012;14:719-726.
Google Scholar | Crossref | Medline | ISI14. Lavebratt, C, Olsson, S, Backlund, L, et al. The KMO allele encoding Arg452 is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression. Mol Psychiatry. 2014;19:334-341.
Google Scholar | Crossref | Medline | ISI15. Erhardt, S, Hajos, M, Lindberg, A, Engberg, G. Nicotine-induced excitation of locus coeruleus neurons is blocked by elevated levels of endogenous kynurenic acid. Synapse. 2000;37:104-108.
Google Scholar | Crossref | Medline16. Giorgini, F, Huang, SY, Sathyasaikumar, KV, et al. Targeted deletion of kynurenine 3-monooxygenase in mice: a new tool for studying kynurenine pathway metabolism in periphery and brain. J Biol Chem. 2013;288:36554-36566.
Google Scholar | Crossref | Medline | ISI17. Tufvesson-Alm, M, Schwieler, L, Schwarcz, R, Goiny, M, Erhardt, S, Engberg, G. Importance of kynurenine 3-monooxygenase for spontaneous firing and pharmacological responses of midbrain dopamine neurons: relevance for schizophrenia. Neuropharmacology. 2018;138:130-139.
Google Scholar | Crossref | Medline18. Erhardt, S, Schwieler, L, Emanuelsson, C, Geyer, M. Endogenous kynurenic acid disrupts prepulse inhibition. Biol Psychiatry. 2004;56:255-260.
Google Scholar | Crossref | Medline | ISI19. Asp, L, Holtze, M, Powell, SB, Karlsson, H, Erhardt, S. Neonatal infection with neurotropic influenza A virus induces the kynurenine pathway in early life and disrupts sensorimotor gating in adult Tap1−/− mice. Int J Neuropsychopharmacol. 2010;13:475-485.
Google Scholar | Crossref | Medline | ISI20. Liu, XC, Holtze, M, Powell, SB, et al. Behavioral disturbances in adult mice following neonatal virus infection or kynurenine treatment—role of brain kynurenic acid. Brain Behav Immun. 2014;36:80-89.
Google Scholar | Crossref | Medline21. Chess, AC, Simoni, MK, Alling, TE, Bucci, DJ. Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr Bull. 2007;33:797-804.
Google Scholar | Crossref | Medline | ISI22. Chess, AC, Landers, AM, Bucci, DJ. L-kynurenine treatment alters contextual fear conditioning and context discrimination but not cue-specific fear conditioning. Behav Brain Res. 2009;201:325-331.
Google Scholar | Crossref | Medline23. Pocivavsek, A, Wu, HQ, Potter, MC, Elmer, GI, Pellicciari, R, Schwarcz, R. Fluctuations in endogenous kynurenic acid control hippocampal glutamate and memory. Neuropsychopharmacology. 2011;36:2357-2367.
Google Scholar | Crossref | Medline | ISI24. Pocivavsek, A, Thomas, MAR, Elmer, GI, Bruno, JP, Schwarcz, R. Continuous kynurenine administration during the prenatal period, but not during adolescence, causes learning and memory deficits in adult rats. Psychopharmacology (Berl). 2014;231:2799-2809.
Google Scholar | Crossref | Medline25. Tamminga, CA, Stan, AD, Wagner, AD. The hippocampal formation in schizophrenia. Am J Psychiatr. 2010;167:1178-1193.
Google Scholar | Crossref | Medline | ISI26. Forrest, CM, McNair, K, Pisar, M, Khalil, OS, Darlington, LG, Stone, TW. Altered hippocampal plasticity by prenatal kynurenine administration, kynurenine-3-monoxygenase (KMO) deletion or galantamine. Neuroscience. 2015;310:91-105.
Google Scholar | Crossref | Medline27. Atlas, A, Franzen-Röhl, E, Söderlund, J, et al. Sustained elevation of kynurenic acid in the cerebrospinal fluid of patients with herpes simplex virus type 1 encephalitis. Int J Tryptophan Res. 2013;6:89-96.
Google Scholar | SAGE Journals28. Holmberg, D, Franzén-Röhl, E, Idro, R, et al. Cerebrospinal fluid kynurenine and kynurenic acid concentrations are associated with coma duration and long-term neurocognitive impairment in Ugandan children with cerebral malaria. Malar J. 2017;16:303.
Google Scholar | Crossref | Medline29. Erhardt, S, Pocivavsek, A, Repici, M, et al. Adaptive and behavioral changes in kynurenine 3-monooxygenase knockout mice: relevance to psychotic disorders. Biol Psychiatry. 2017;82:756-765.
Google Scholar | Crossref | Medline30. Beggiato, S, Notarangelo, FM, Sathyasaikumar, KV, Giorgini, F, Schwarcz, R. Maternal genotype determines kynurenic acid levels in the fetal brain: implications for the pathophysiology of schizophrenia. J Psychopharmacol. 2018;32:1223-1232.
Google Scholar | SAGE Journals | ISI31. Deacon, RM, Rawlins, JN. T-maze alternation in the rodent. Nat Protoc. 2006;1:7-12.
Google Scholar | Crossref | Medline | ISI32. Nematollahi, A, Sun, G, Jayawickrama, GS, Hanrahan, JR, Church, WB. Study of the activity and possible mechanism of action of a reversible inhibitor of recombinant human KAT-2: a promising lead in neurodegenerative and cognitive disorders. Molecules. 2016;21:856.
Google Scholar | Crossref33. Sharma, S, Rakoczy, S, Brown-Borg, H. Assessment of spatial memory in mice. Life Sci. 2010;87:521-536.
Google Scholar | Crossref | Medline34. Chess, AC, Bucci, DJ. Increased concentration of cerebral kynurenic acid alters stimulus processing and conditioned responding. Behav Brain Res. 2006;170:326-332.
Google Scholar | Crossref | Medline | ISI35. Collingridge, GL, Kehl, SJ, McLennan, H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol. 1983;334:33-46.
Google Scholar | Crossref | Medline | ISI36. Morris, RG, Anderson, E, Lynch, GS, Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 1986;319:774-776.
Google Scholar | Crossref | Medline | ISI37. Tonkiss, J, Rawlins, JN. The competitive NMDA antagonist AP5, but not the non-competitive antagonist MK801, induces a delay-related impairment in spatial working memory in rats. Exp Brain Res. 1991;85:349-358.
Google Scholar | Crossref | Medline38. McHugh, SB, Niewoehner, B, Rawlins, JN, Bannerman, DM. Dorsal hippocampal N-methyl-D-aspartate receptors underlie spatial working memory performance during non-matching to place testing on the T-maze. Behav Brain Res. 2008;186:41-47.
Google Scholar | Crossref | Medline | ISI39. Lalonde, R. The neurobiological basis of spontaneous alternation. Neurosci Biobehav Rev. 2002;26:91-104.
Google Scholar | Crossref | Medline | ISI40. Lu, W, Man, H, Ju, W, Trimble, WS, MacDonald, JF, Wang, YT. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron. 2001;29:243-254.
Google Scholar | Crossref | Medline41. Ganong, AH, Cotman, CW. Kynurenic acid and quinolinic acid act at N-methyl-D-aspartate receptors in the rat hippocampus. J Pharmacol Exp Ther. 1986;236:293-299.
Google Scholar | Medline | ISI42. Birch, PJ, Grossman, CJ, Hayes, AG. Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol. 1988;154:85-87.
Google Scholar | Crossref | Medline | ISI43. Kessler, M, Terramani, T, Lynch, G, Baudry, M. A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem. 1989;52:1319-1328.
Google Scholar | Crossref | Medline | ISI44. Parsons, CG, Danysz, W, Quack, G, et al. Novel systemically active antagonists of the glycine site of the N-methyl-D-aspartate receptor: electrophysiological, biochemical and behavioral characterization. J Pharmacol Exp Ther. 1997;283:1264-1275.
Google Scholar | Medline | ISI45. Bertolino, M, Vicini, S, Costa, E. Kynurenic acid inhibits the activation of kainic and N-methyl-D-aspartic acid-sensitive ionotropic receptors by a different mechanism. Neuropharmacology. 1989;28:453-

Comments (0)

No login
gif