Improved Voltammetric Determination of Kynurenine at the Nafion Covered Glassy Carbon Electrode – Application in Samples Delivered from Human Cancer Cells

1. Munn, DH, Mellor, AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol. 2016;37:193-207.
Google Scholar | Crossref | Medline | ISI2. Badawy, AA-B . Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep. 2015;35:e00261.
Google Scholar | Crossref | Medline | ISI3. Eastman, CL, Guilarte, TR. Cytotoxicity of 3-hydroxykynurenine in a neuronal hybrid cell line. Brain Res. 1989;495:225-231.
Google Scholar | Crossref | Medline | ISI4. Guillemin, GJ. Quinolinic acid, the inescapable neurotoxin. FEBS J. 2012;279:1325-1365.
Google Scholar5. Frumento, G, Rotondo, R, Tonetti, M, Damonte, G, Benatti, U, Ferrara, GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002;196:459-468.
Google Scholar | Crossref | Medline | ISI6. Opitz, CA, Litzenburger, UM, Sahm, F, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478:197-203.
Google Scholar | Crossref | Medline | ISI7. Huengsberg, M, Winer, JB, Compels, M, Round, R, Ross, J, Shahmanesh, M. Serum kynurenine-to-tryptophan ratio increases with progressive disease in HIV-infected patients. Clin Chem. 1998;44:858-862.
Google Scholar | Crossref | Medline | ISI8. Suzuki, Y, Suda, T, Furuhashi, K, et al. Increased serum kynurenine/tryptophan ratio correlates with disease progression in lung cancer. Lung Cancer. 2010;67:361-365.
Google Scholar | Crossref | Medline | ISI9. Zinellu, A, Fois, AG, Zinellu, E, et al. Increased kynurenine plasma concentrations and kynurenine-tryptophan ratio in mild-to-moderate chronic obstructive pulmonary disease patients. Biomark Med. 2018;12:229-237.
Google Scholar | Crossref | Medline10. Evangelisti, M, De Rossi, P, Rabasco, J, et al. Changes in serum levels of kynurenine metabolites in paediatric patients affected by ADHD. Eur Child Adolesc Psychiatry. 2017;26:1433-1441.
Google Scholar | Crossref | Medline11. Sadok, I, Gamian, A, Staniszewska, MM. Chromatographic analysis of tryptophan metabolites. J Sep Sci. 2017;40:3020–3045.
Google Scholar | Crossref | Medline12. Rizvi, AS, Murtaza, G, Yan, D, et al. Development of molecularly imprinted 2D photonic crystal hydrogel sensor for detection of L-Kynurenine in human serum. Talanta. 2020;208:120403-120412.
Google Scholar | Crossref | Medline13. Klockow, JL, Glass, TE. Development of a fluorescent chemosensor for the detection of kynurenine. Org Lett. 2013;15:235-237.
Google Scholar | Crossref | Medline | ISI14. Li, G, Xia, Y, Tian, Y, et al. Review—recent developments on graphene-based electrochemical sensors toward nitrite. J Electrochem Soc. 2019;166:B881-B895.
Google Scholar | Crossref15. Li, Q, Xia, Y, Wan, X, et al. Morphology-dependent MnO2/nitrogen-doped graphene nanocomposites for simultaneous detection of trace dopamine and uric acid. Mater Sci Eng C. 2020;109:110615-110626.
Google Scholar | Crossref | Medline16. Li, G, Zhong, P, Ye, Y, et al. A highly sensitive and stable dopamine sensor using shuttle-like α-Fe2O3 nanoparticles/electro-reduced graphene oxide composites. J Electrochem Soc. 2019;166:B1552-B1561.
Google Scholar | Crossref17. Liu, H, Xiong, R, Zhong, P, et al. Nanohybrids of shuttle-like α-Fe2O3 nanoparticles and nitrogen-doped graphene for simultaneous voltammetric detection of dopamine and uric acid. New J Chem. 2020;44:20797-20805.
Google Scholar | Crossref18. Sadok, I, Tyszczuk-Rotko, K, Mroczka, R, Staniszewska, M. Simultaneous voltammetric analysis of tryptophan and kynurenine in culture medium from human cancer cells. Talanta. 2020;209:120574-120585.
Google Scholar | Crossref | Medline19. Yue, W, Bange, A, Riehl, BL, et al. Manganese detection with a metal catalyst free carbon nanotube electrode: anodic versus cathodic stripping voltammetry. Electroanalysis. 2012;24:1909-1914.
Google Scholar | Crossref20. Nagles, E, Arancibia, V, Rojas, C, Segura, R. Nafion-mercury coated film electrode for the adsorptive stripping voltammetric determination of lead and cadmium in the presence of pyrogallol red. Talanta. 2012;99:119-124.
Google Scholar | Crossref | Medline21. Torma, F, Grün, A, Bitter, I, Tóth, K. Calixarene/Nafion-modified bismuth-film electrodes for adsorptive stripping voltammetric determination of lead. Electroanalysis. 2009;21:1961-1969.
Google Scholar | Crossref22. Meepun, N, Siriket, S, Dejmanee, S. Adsorptive stripping voltammetry for determination of cadmium in the presence of cupferron on a Nafion-coated bismuth film electrode. Int J Electrochem Sci. 2012;7:10582-10591.
Google Scholar23. Katowah, DF, Hussein, MA, Alam, MM, et al. Designed network of ternary core-shell PPCOT/NiFe2O4/C-SWCNTs nanocomposites. A selective Fe3+ ionic sensor. J Alloys Compd. 2020;834:155020-155036.
Google Scholar | Crossref24. Aqlan, FM, Alam, MM, Al-Bogami, AS, et al. Efficient electro-chemical sensor for sensitive Cd2+detection based on novel in-situ synthesized hydrazonoyl bromide (HB). J Mol Struct. 2021;1231:129690-129699.
Google Scholar | Crossref25. Rahman, MM, Ahmed, J, Asiri, AM, Alamry, KA. Fabrication of a hydrazine chemical sensor based on facile synthesis of doped NZO nanostructure materials. New J Chem. 2020;44:13018-13029.
Google Scholar | Crossref26. Subhan, MA, Chandra Saha, P, Ahmed, J, Asiri, AM, Al-Mamun, M, Rahman, MM. Development of an ultra-sensitive para-nitrophenol sensor using tri-metallic oxide MoO2·Fe3O4·CuO nanocomposites. Mater Adv. 2020;1:2831-2839.
Google Scholar | Crossref27. Abu-Zied, BM, Alam, MM, Asiri, AM, Ahmed, J, Rahman, MM. Efficient hydroquinone sensor development based on Co3O4 nanoparticle. Microchem J. 2020;157:104972-104981.
Google Scholar | Crossref28. Rahman, MM, Ahmed, J, Asiri, AM. Selective bilirubin sensor fabrication based on doped IAO nanorods for environmental remediation. New J Chem. 2019;43:19298-19307.
Google Scholar | Crossref29. Rahman, MM, Ahmed, J, Asiri, AM. Thiourea sensor development based on hydrothermally prepared CMO nanoparticles for environmental safety. Biosens Bioelectron. 2018;99:586-592.
Google Scholar | Crossref | Medline30. Rahman, MM, Ahmed, J. Cd-doped Sb2O4 nanostructures modified glassy carbon electrode for efficient detection of melamine by electrochemical approach. Biosens Bioelectron. 2018;102:631-636.
Google Scholar | Crossref | Medline31. Ahmed, J, Rahman, MM, Siddiquey, IA, Asiri, AM, Hasnat, MA. Efficient Bisphenol-A detection based on the ternary metal oxide (TMO) composite by electrochemical approaches. Electrochim Acta. 2017;246:597-605.
Google Scholar | Crossref32. Rahman, MM, Ahmed, J, Asiri, AM. Development of Creatine sensor based on antimony-doped tin oxide (ATO) nanoparticles. Sens Actuators B Chem. 2017;242:167-175.
Google Scholar | Crossref33. Ahmed, J, Rahman, MM, Siddiquey, IA, Asiri, AM, Hasnat, MA. Efficient hydroquinone sensor based on zinc, strontium and nickel based ternary metal oxide (TMO) composites by differential pulse voltammetry. Sens Actuators B Chem. 2018;256:383-392.
Google Scholar | Crossref34. Tyszczuk-Rotko, K, Bęczkowska, I. Nafion covered lead film electrode for the voltammetric determination of caffeine in beverage samples and pharmaceutical formulations. Food Chem. 2015;172:24-29.
Google Scholar | Crossref | Medline35. Yi, H, Wu, K, Hu, S, Cui, D. Adsorption stripping voltammetry of phenol at Nafion-modified glassy carbon electrode in the presence of surfactants. Talanta. 2001;55:1205-1210.
Google Scholar | Crossref | Medline36. Desai, PB, Srivastava, AK. Adsorptive stripping differential pulse voltammetric determination of metoprolol at Nafion-CNT-nano-composite film sensor. Sens Actuators B Chem. 2013;176:632-638.
Google Scholar | Crossref37. Sadok, I, Rachwał, K, Staniszewska, M. Simultaneous quantification of selected kynurenines analyzed by liquid chromatography-mass spectrometry in medium collected from cancer cell cultures. J Vis Exp. 2020;159:e61031-e61040.
Google Scholar38. Mailankot, M, Staniszewska, MM, Butler, H, et al. Indoleamine 2,3-dioxygenase overexpression causes kynurenine-modification of proteins, fiber cell apoptosis and cataract formation in the mouse lens. Lab Invest. 2009;89:498-512.
Google Scholar | Crossref | Medline39. Sadok, I, Rachwał, K, Jonik, I, Staniszewska, M. Reliable chromatographic assay for measuring of indoleamine 2,3-dioxygenase 1 (IDO1) activity in human cancer cells. J Enzyme Inhib Med Chem. 2021;36:581-592.
Google Scholar | Crossref | Medline40. Sadok, I, Rachwał, K, Staniszewska, M. Application of the optimized and validated LC–MS method for simultaneous quantification of tryptophan metabolites in culture medium from cancer cells. J Pharm Biomed Anal. 2019;176:112805-112815.
Google Scholar | Crossref | Medline41. Tömösi, F, Kecskeméti, G, Cseh, EK, et al. A validated UHPLC-MS method for tryptophan metabolites: application in the diagnosis of multiple sclerosis. J Pharm Biomed Anal. 2020;185:113246-113258.
Google Scholar | Crossref | Medline42. Sipa, K, Brycht, M, Leniart, A, et al. β–Cyclodextrins incorporated multi-walled carbon nanotubes modified electrode for the voltammetric determination of the pesticide dichlorophen. Talanta. 2018;176:625-634.
Google Scholar | Crossref | Medline43. Shayani-jam, H. Electrochemical study of adsorption and electrooxidation of 4,4′-biphenol on the glassy carbon electrode: determination of the orientation of adsorbed molecules. Monatsh Chem. 2019;150:183-192.
Google Scholar | Crossref44. Karami, P, Majidi, MR, Johari-Ahar, M, Barar, J, Omidi, Y. Development of screen-printed tryptophan-kynurenine immunosensor for in vitro assay of kynurenine-mediated immunosuppression effect of cancer cells on activated T-cells. Biosens Bioelectron. 2017;92:287-293.
Google Scholar | Crossref | Medline45. Sousa, A, Ribeiro, C, Gonçalvesa, VMF, et al. Development and validation of a liquid chromatography method using UV/fluorescence detection for the quantitative determination of metabolites of the kynurenine pathway in human urine: application to patients with heart failure. J Pharm Biomed Anal. 2021;198:113997-114006.
Google Scholar | Crossref | Medline46. Eser, B, Özkan, Y, Sepici Dinçel, A. Determination of tryptophan and kynurenine by LC-MS/MS by using amlodipine as an internal standard. J Am Soc Mass Spectrom. 2020;31:379-385.
Google Scholar | Crossref | Medline47. Notarangelo, FM, Wu, HQ, Macherone, A, Graham, DR, Schwarcz, R. Gas chromatography/tandem mass spectrometry detection of extracellular kynurenine and related metabolites in normal and lesioned rat brain. Anal Biochem. 2012;421:573-581.
Google Scholar | Crossref | Medline48. Zinellu, A, Sotgia, S, Deiana, L, Talanas, G, Terrosu, PF, Carru, C. Simultaneous analysis of kynurenine and tryptophan in human plasma by capillary electrophoresis with UV detection. J Sep Sci. 2012;35:1146-1151.
Google Scholar | Crossref | Medline49. Tang, T, Liu, M, Chen, Z, et al. Highly sensitive luminescent lanthanide metal-organic framework sensor for L-kynurenine. J Rare Earths. Published online February 20, 2021. doi:10.1016/j.jre.2021.02.008
Google Scholar | Crossref50. Sakurai, M, Yamamoto, Y, Kanayama, N, et al. Serum Metabolic Profiles of the Tryptophan-Kynurenine Pathway in the high risk subjects of major depressive disorder. Sci Rep. 2020;10:1961.
Google Scholar | Crossref51. Zhang, A, Rijal, K, Ng, SK, Ravid, K, Chitalia, V. A mass spectrometric method for quantification of tryptophan-derived uremic solutes in human serum. J Biol Methods. 2017;4:

Comments (0)

No login
gif