Infection risk assessment for socially structured population using stochastic microexposure model

Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proc R Soc Lond Ser A, Containing Pap A Math Phys character. 1927;115:700–21.

Google Scholar 

Kermack WO, McKendrick AG. Contributions to the mathematical theory of epidemics—II. The problem of endemicity. Bull Math Biol. 1991;53:57–87.

CAS  PubMed  Google Scholar 

Kermack WO, McKendrick AG. Contributions to the mathematical theory of epidemics—III. Further studies of the problem of endemicity. Bull Math Biol. 1991;53:89–118.

CAS  PubMed  Google Scholar 

He S, Peng Y, Sun K. SEIR modeling of the COVID-19 and its dynamics. Nonlinear Dyn. 2020;101:1667–80.

Article  PubMed  PubMed Central  Google Scholar 

Weissman GE, Crane-Droesch A, Chivers C, Luong T, Hanish A, Levy MZ, et al. Locally informed simulation to predict hospital capacity needs during the COVID-19 pandemic. Ann Intern Med. 2020;173:21–8.

Article  PubMed  Google Scholar 

Calvetti D, Hoover A, Rose J, Somersalo E Bayesian dynamical estimation of the parameters of an SE (A) IR COVID-19 spread model. arXiv preprint arXiv:200504365. 2020.

Clancy D, O’Neill PD. Bayesian estimation of the basic reproduction number in stochastic epidemic models. Bayesian Anal. 2008;3:737–57.

Article  Google Scholar 

Chen Y-C, Lu P-E, Chang C-S, Liu A. Time-Dependent SIR Model for COVID-19 With Undetectable Infected Persons. In IEEE Transactions on Network Science and Engineering. 2020;7:3279–94.

Newman ME. Spread of epidemic disease on networks. Phys Rev E. 2002;66:016128.

Article  CAS  Google Scholar 

Ma J, van den Driessche P, Willeboordse FH. Effective degree household network disease model. J Math Biol. 2013;66:75–94.

Article  PubMed  Google Scholar 

Rǎdulescu A, Williams C, Cavanagh K. Management strategies in a SEIR-type model of COVID 19 community spread. Sci Rep. 2020;10:21256.

Article  PubMed  PubMed Central  Google Scholar 

Salathé M, Jones JH. Dynamics and Control of Diseases in Networks with Community Structure. PLOS Comput Biol. 2010;6:e1000736.

Article  PubMed  PubMed Central  Google Scholar 

Tolles J, Luong T. Modeling epidemics with compartmental models. Jama. 2020;323:2515–6.

Article  PubMed  Google Scholar 

Cuevas E. An agent-based model to evaluate the COVID-19 transmission risks in facilities. Comput Biol Med. 2020;121:103827.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva PCL, Batista PVC, Lima HS, Alves MA, Guimarães FG, Silva RCP. COVID-ABS: An agent-based model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions. Chaos Solitons Fractals. 2020;139:110088.

Article  PubMed  PubMed Central  Google Scholar 

Shamil MS, Farheen F, Ibtehaz N, Khan IM, Rahman MS. An agent-based modeling of COVID-19: validation, analysis, and recommendations. Cognitive Comput. 2024:16:1723–34.

Kerr CC, Stuart RM, Mistry D, Abeysuriya RG, Rosenfeld K, Hart GR, et al. Covasim: an agent-based model of COVID-19 dynamics and interventions. PLOS Comput Biol. 2021;17:e1009149.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hinch R, Probert WJ, Nurtay A, Kendall M, Wymant C, Hall M, et al. OpenABM-Covid19—An agent-based model for non-pharmaceutical interventions against COVID-19 including contact tracing. PLoS Comput Biol. 2021;17:e1009146.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manzo G. Matthews T. Potentialities and limitations of agent-based simulations. Rev française de sociologie. 2014;55:653–88.

Article  Google Scholar 

Troitzsch KG. Analysing simulation results statistically: does significance matter? Interdisciplinary applications of agent-based social simulation and modeling: IGI Global; 2014. p. 88-105.

Milne GJ, Kelso JK, Kelly HA, Huband ST, McVernon J. A small community model for the transmission of infectious diseases: comparison of school closure as an intervention in individual-based models of an influenza pandemic. PLOS ONE. 2008;3:e4005.

Article  PubMed  PubMed Central  Google Scholar 

Hussein T, Löndahl J, Thuresson S, Alsved M, Al-Hunaiti A, Saksela K, et al. Indoor Model Simulation for COVID-19 Transport and Exposure. Int J Environ Res Public Health. 2021;18:2927.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lelieveld J, Helleis F, Borrmann S, Cheng Y, Drewnick F, Haug G, et al. Model calculations of aerosol transmission and infection risk of COVID-19 in indoor environments. MDPI AG; 2020. p. 1-18.

Vuorinen V, Aarnio M, Alava M, Alopaeus V, Atanasova N, Auvinen M, et al. Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Saf Sci. 2020;130:104866.

Article  PubMed  PubMed Central  Google Scholar 

Vecherin S, Chang D, Wells E, Trump B, Meyer A, Desmond J, et al. Assessment of the COVID-19 infection risk at a workplace through stochastic microexposure modeling. J Exposure Sci Environ Epidemiol. 2022;32:712–9.

Article  CAS  Google Scholar 

Zhang X, Sun G-Q, Zhu Y-X, Ma J, Jin Z. Epidemic dynamics on semi-directed complex networks. Math Biosci. 2013;246:242–51.

Article  PubMed  Google Scholar 

Park SY, Kim Y-M, Yi S, Lee S, Na B-J, Kim CB, et al. Coronavirus disease outbreak in call center, South Korea. Emerg Infect Dis. 2020;26:1666.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stehlé J, Voirin N, Barrat A, Cattuto C, Colizza V, Isella L, et al. Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med. 2011;9:87.

Article  PubMed  PubMed Central  Google Scholar 

Albert R, Barabási A-L. Statistical mechanics of complex networks. Rev Mod Phys. 2002;74:47.

Article  Google Scholar 

Comments (0)

No login
gif