Zartarian V, Xue J, Tornero-Velez R, Brown J. Children’s lead exposure: a multimedia modeling analysis to guide public health decision-making. Environ Health Perspect. 2017;125:097009.
Article PubMed PubMed Central Google Scholar
US EPA. Exposure Factors Handbook Chapter 5 2017 [Available from: https://www.epa.gov/expobox/exposure-factors-handbook-chapter-5.
Panagopoulos Abrahamsson D, Sobus JR, Ulrich EM, Isaacs K, Moschet C, Young TM, et al. A quest to identify suitable organic tracers for estimating children’s dust ingestion rates. J Expo Sci Environ Epidemiol. 2021;31:70–81.
Article PubMed CAS Google Scholar
Ferguson A, Adelabu F, Solo-Gabriele H, Obeng-Gyasi E, Fayad-Martinez C, Gidley M, et al. Methodologies for the collection of parameters to estimate dust/soil ingestion for young children. Front Public Health. 2024;12.
Xue J, Zartarian V, Moya J, Freeman N, Beamer P, Black K, et al. A meta-analysis of children’s hand-to-mouth frequency data for estimating nondietary ingestion exposure. Risk Anal. 2007;27:411–20.
Tsou M-C, Özkaynak H, Beamer P, Dang W, Hsi H-C, Jiang C-B, et al. Mouthing activity data for children aged 7 to 35 months in Taiwan. J Expo Sci Environ Epidemiol. 2015;25:388–98.
Freeman NCG, Jimenez M, Reed KJ, Gurunathan S, Edwards RD, Roy A, et al. Quantitative analysis of children’s microactivity patterns: the Minnesota Children’s Pesticide Exposure Study. J Expo Sci Environ Epidemiol. 2001;11:501–9.
Tulve NS, Suggs JC, McCurdy T, Cohen Hubal EA, Moya J. Frequency of mouthing behavior in young children. J Expo Sci Environ Epidemiol. 2002;12:259–64.
Rochat P (ed.) Object manipulation and exploration in 2-to 5-month-old infants 2001.
Ruff HA. Infants’ manipulative exploration of objects: Effects of age and object characteristics. Dev Psychol. 1984;20:9–20.
Palmer CF. The discriminating nature of infants’ exploratory actions. Dev Psychol. 1989;25:885–93.
Malachowski LG, Needham AW. Infants exploring objects: a cascades perspective. Adv Child Dev Behav. 2023;64:39–68.
Whyte VA, McDonald PV, Baillargeon R, Newell KM. Mouthing and grasping of objects by young infants. Ecol Psychol. 1994;6:205–18.
Moya J, Phillips L. A review of soil and dust ingestion studies for children. J Expo Sci Environ Epidemiol. 2014;24:545–54.
Beamer PI, Canales RA, Bradman A, Leckie JO. Farmworker children’s residential non-dietary exposure estimates from micro-level activity time series. Environ Int. 2009;35:1202–9.
Article PubMed PubMed Central CAS Google Scholar
Beamer P, Key ME, Ferguson AC, Canales RA, Auyeung W, Leckie JO. Quantified activity pattern data from 6 to 27-month-old farmworker children for use in exposure assessment. Environ Res. 2008;108:239–46.
Article PubMed PubMed Central CAS Google Scholar
Black K, Shalat SL, Freeman NCG, Jimenez M, Donnelly KC, Calvin JA. Children’s mouthing and food-handling behavior in an agricultural community on the US/Mexico border. J Expo Sci Environ Epidemiol. 2005;15:244–51.
Tsou M-C, Özkaynak H, Beamer P, Dang W, Hsi H-C, Jiang C-B, et al. Mouthing activity data for children age 3 to <6 years old and fraction of hand area mouthed for children age <6 years old in Taiwan. J Expo Sci Environ Epidemiol. 2018;28:182–92.
Kwong LH, Ercumen A, Pickering AJ, Unicomb L, Davis J, Luby SP. Age-related changes to environmental exposure: variation in the frequency that young children place hands and objects in their mouths. J Expo Sci Environ Epidemiol. 2020;30:205–16.
Ferguson AC, Canales RA, Beamer P, Auyeung W, Key M, Munninghoff A, et al. Video methods in the quantification of children’s exposures. J Expo Sci Environ Epidemiol. 2006;16:287–98.
Juberg DR, Alfano K, Coughlin RJ, Thompson KM. An observational study of object mouthing behavior by young children. Pediatrics. 2001;107:135–42.
Article PubMed CAS Google Scholar
Zartarian VG, Ferguson AC, Ong CG, Leckie JO. Quantifying videotaped activity patterns: video translation software and training methodologies. J Expo Anal Environ Epidemiol. 1997;7:535–42.
Zartarian VG, Streicker J, Rivera A, Cornejo CS, Molina S, Valadez OF, et al. A pilot study to collect micro-activity data of two- to four-year-old farm labor children in Salinas Valley, California. J Expo Anal Environ Epidemiol. 1995;5:21–34.
Ferguson A, Dwivedi A, Adelabu F, Ehindero E, Lamssali M, Obeng-Gyasi E, et al. Quantified activity patterns for young children in beach environments relevant for exposure to contaminants. Int J Environ Res Public Health. 2021;18.
Oh HS, Ryu M. Hand-to-face contact of preschoolers during indoor activities in childcare facilities in the Republic of Korea. Int J Environ Res Public Health. 2022;19:13282.
Article PubMed PubMed Central Google Scholar
Fang H-S, Li J, Tang H, Xu C, Zhu H, Xiu Y, et al. Alphapose: whole-body regional multi-person pose estimation and tracking in real-time. IEEE Trans Pattern Anal Mach Intell. 2022;45:7157–73.
Wang J, Sun K, Cheng T, Jiang B, Deng C, Zhao Y, et al. Deep high-resolution representation learning for visual recognition. IEEE Trans Pattern Anal Mach Intell. 2020;43:3349–64.
Loper M, Mahmood N, Romero J, Pons-Moll G, Black MJ. SMPL: a skinned multi-person linear model. Semin Graph Pap: Push Bound. 2023;2:851–66. p.
Huang X, Fu N, Liu S, Ostadabbas S (editors) Invariant representation learning for infant pose estimation with small data. In: Proceedings 16th international conference on automatic face and gesture recognition (FG 2021); IEEE; 2021.
Cai Z, Yin W, Zeng A, Wei C, Sun Q, Yanjun W, et al. Smpler-X: scaling up expressive human pose and shape estimation. Adv Neural Inf Process Syst. 2024;36.
Goel S, Pavlakos G, Rajasegaran J, Kanazawa A, Malik J. Humans in 4D: reconstructing and tracking humans with transformers. In: Proceedings IEEE/CVF international conference on computer vision (ICCV). 2023. pp 14783–94.
BuildClinical. 2025 [https://www.buildclinical.com/].
Szeliski R. Computer vision: algorithms and applications, 2nd ed. Switzerland: Springer; 2022.
Joo HL, Liu H, Tan L, Gui L, Nabbe B, Matthews I, et al. Panoptic studio: a massively multiview system for social motion capture. In: Proceedings IEEE international conference on computer vision. 2015:3334–42.
Dong JFQ, Jiang W, Yang Y, Huang Q, Bao H, Zhou X. Fast and robust multi-person 3 d pose estimation and tracking from multiple views. IEEE Trans Pattern Anal Mach Intell. 2021;44:6981–92.
Ren S, He K, Girshick R, Sun J. Towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst. 2015;9199:2969239–50.
Contributors M. Openmmlab pose estimation toolbox and benchmark. 2020.
Sun K, Xiao B, Liu D, Wang J, editors. Deep high-resolution representation learning for human pose estimation. In: Proceedings IEEE/CVF conference on computer vision and pattern recognition; 2019.
Jin S, Xu L, Xu J, Wang C., Liu W, Qian C, et al. Whole-body human pose estimation in the wild. In: Proceedings 16th European conference on computer vision–ECCV 2020; 23–28 August; Glasgow, UK: Springer International Publishing; 2020. pp 196–214.
Ren T, Liu S, Zeng A, Lin J, Li K, Cao H, et al. Grounded Sam: assembling open-world models for diverse visual tasks. Preprint at https://doi.org/10.48550/arXiv.2401.14159.
Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, et al., editors. Segment anything. In: Proceedings IEEE/CVF international conference on computer vision; 2023.
Easymocap—make human motion capture easier Github2021 https://github.com/zju3dv/EasyMocap.
He K, Zhang X, Ren S, Sun J, editors. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016.
Bakeman R, Quera V. Behavioral observation. APA handbook of research methods in psychology, Vol 1: Foundations, planning, measures, and psychometrics. APA handbooks in psychology®. Washington, DC, US: American Psychological Association; 2012. p. 207–25.
Bakeman R. Behavioral observation and coding. Handbook of research methods in social and personality psychology. New York, NY, US: Cambridge University Press; 2000. p. 138–59.
Beamer PI, Luik CE, Canales RA, Leckie JO. Quantified outdoor micro-activity data for children aged 7–12-years old. J Expo Sci Environ Epidemiol. 2012;22:82–92.
Lopez-Galvez N, Claude J, Wong P, Bradman A, Hyland C, Castorina R, et al. Quantification and analysis of micro-level activities data from children aged 1-12 years old for use in the assessments of exposure to recycled tire on turf and playgrounds. Int J Env Res Public Health. 2022;19:2483.
Groot EM, Lekkerkerk MC, Steenbekkers, LPA. Mouthing behaviour of young children; an observational study (summary report). RIVM report 613320 002. RIVM: Bilthoven, The Netherlands; 1998.
Davis S MP, Kohler E, Wiggins C. Soil ingestion in children with PICA: Final Report (US EPA Cooperative Agreement CR 816334-01). Seattle, WA: Fred Hutchison Cancer Research Center; 1995.
Hubal EAC, Sheldon LS, Burke JM, McCurdy TR, Berry MR, Rigas ML, et al. Children’s exposure assessment: a review of factors influencing Children’s exposure, and the data available to characterize and assess that exposure. Environ Health Perspect. 2000;108:475–86.
Pacheco C, Mavroudi E, Kokkoni E, Tanner HG, Vidal R, editors. A detection-based approach to multiview action classification in infants. In: Proceedings 25th international conference on pattern recognition (ICPR); 2021.
Chorney JM, McMurtry CM, Chambers CT, Bakeman R. Developing and modifying behavioral coding schemes in pediatric psychology: a practical guide. J Pediatr Psychol. 2014;40:154–64.
Article PubMed PubMed Central Google Scholar
Dechemi A, Bhakri V, Sahin I, Modi A, Mestas J, Peiris P, et al., editors. BabyNet: a lightweight network for infant reaching action recognition in unconstrained environments to support future pediatric rehabilitation applications. In: Proceedings 30th IEEE international conference on robot & human interactive communication (RO-MAN); 8–12 August 2021.
Manne SKR, Zhu S, Ostadabbas S, Wan M, editors. Automatic infant respiration estimation from video: a deep flow-based algorithm and a novel public benchmark. In: Proceedings international workshop on preterm, perinatal and paediatric image analysis. Springer; 2023.
Zhu S, Wan M, Hatamimajoumerd E, Jain K, Zlota S, Kamath CV, et al., editors. A video-based end-to-end pipeline for non-nutritive sucking action recognition and segmentation in young infants. In: Proceedings medical image computing and computer assisted intervention—MICCAI 2023; Cham: Springer Nature Switzerland; 2023.
Hesse N, Pujades S, Romero J, Black MJ, Bodensteiner C, Arens M, et al., editors. Learning an infant body model from RGB-D data for accurate full-body motion analysis. In: Proceedings 21st international conference on medical image computing and computer-assisted intervention–MICCAI 2018, Granada, Spain, 16–20 September 2018, Springer.
Xue J, Zartarian V, Tulve N, Moya J, Freeman N, Auyeung W, et al. A meta-analysis of children’s object-to-mouth frequency data for estimating non-dietary ingestion exposure. J Expo Sci Environ Epidemiol. 2010;20:536–45.
Comments (0)