Mitochondrial fission genes MTFP1/MTFP2 as predictive biomarkers in prostate cancer: a mendelian randomization study

Fontana F, Anselmi M, Limonta P. Unraveling the Peculiar Features of Mitochondrial Metabolism and Dynamics in Prostate Cancer. Cancers (Basel). 2023 Feb 13;15(4):1192. 10.3390/cancers15041192. PMID: 36831534; PMCID: PMC9953833. https://doi.org/10.3390/cancers15041192

Tábara LC, Burr SP, Frison M, Chowdhury SR, Paupe V, Nie Y, Johnson M, Villar-Azpillaga J, Viegas F, Segawa M, Anand H, Petkevicius K, Chinnery PF, Prudent J. MTFP1 controls mitochondrial fusion to regulate inner membrane quality control and maintain MtDNA levels. Cell. 2024;187:3619–e36373627.

PubMed  Google Scholar 

Baumgartner V, Schaer D, Moch H, Salemi S, Eberli D. Mitochondrial Elongation and ROS-Mediated Apoptosis in Prostate Cancer Cells under Therapy with Apalutamide and Complex I Inhibitor. Int J Mol Sci. 2024 Jun 25;25(13):6939. PMID: 39000047; PMCID: PMC11241170. https://doi.org/10.3390/ijms25136939

Mahmoud AM, Kostrzewa M, Marolda V, Cerasuolo M, Maccarinelli F, Coltrini D, Rezzola S, Giacomini A, Mollica MP, Motta A, Paris D, Zorzano A, Di Marzo V, Ronca R, Ligresti A. Cannabidiol alters mitochondrial bioenergetics via VDAC1 and triggers cell death in hormone-refractory prostate cancer. Pharmacol Res. 2023;189:106683.

PubMed  Google Scholar 

Goldman M, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, Zhu J, Haussler D. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation, bioRxiv, (2019) 326470.

Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19:A68–77.

PubMed  Google Scholar 

Zhang N, Zhang H, Li S, Wu W, Luo P, Liu Z, Chen Y, Xia Z, Huang C, Cheng Q. Uncovering the predictive and Immunomodulatory potential of transient receptor potential melastatin family-related CCNE1 in pan-cancer. Mol Cancer. 2024;23:258.

PubMed  PubMed Central  Google Scholar 

Zhang N, Yang M, Yang JM, Zhang CY, Guo AY. A predictive Network-Based immune checkpoint Blockade immunotherapeutic signature optimizing patient selection and treatment strategies. Small Methods. 2024;8:e2301685.

PubMed  Google Scholar 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W. Smyth, Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

PubMed  PubMed Central  Google Scholar 

Yu G, Wang LG, Han Y, He QY. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16:284–7.

PubMed  PubMed Central  Google Scholar 

Luo W, Brouwer C. Pathview: an r/bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29:1830–1.

PubMed  PubMed Central  Google Scholar 

Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT, Pyysalo S, Bork P, Jensen LJ, von Mering C. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51:D638–46.

PubMed  Google Scholar 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

PubMed  PubMed Central  Google Scholar 

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11.

PubMed  PubMed Central  Google Scholar 

Magno R, Maia AT. Gwasrapidd: an R package to query, download and wrangle GWAS catalog data. Bioinformatics. 2020;36:649–50.

PubMed  Google Scholar 

Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, Montgomery GW, Goddard ME, Wray NR, Visscher PM, Yang J. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48:481–7.

PubMed  Google Scholar 

Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM, Relton C, Martin RM, Davey Smith G, Gaunt TR, Haycock PC. The MR-Base platform supports systematic causal inference across the human phenome, Elife, 7 (2018).

Qi G, Chatterjee N. Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects, Nat Commun, 10 (2019) 1941.

Ji J, Wang Y, Jing A, Ma L, Yang J, Ren D, Lv J, Lv M, Xu M, Yuan Q, Ma X, Qian Q, Wang W, Geng T, Ding Y, Qin J, Liu Y, Zhou J, Zuo L, Ma S, Wang X, Liu B. HIF1A-dependent overexpression of MTFP1 promotes lung squamous cell carcinoma development by activating the glycolysis pathway, Heliyon, 10 (2024) e28440.

Pan S, Zhou J, Yang W, Zhu W, Zhu T, Yang B, Tang X. MiR-125b-5p targets MTFP1 to inhibit cell proliferation, migration, and invasion and facilitate cell apoptosis in endometrial carcinoma. Mol Biotechnol. 2023;65:961–9.

PubMed  Google Scholar 

Phan TTT, Lin YC, Chou YT, Wu CW, Lin LY. Tumor suppressor p53 restrains cancer cell dissemination by modulating mitochondrial dynamics. Oncogenesis. 2022;11:26.

PubMed  PubMed Central  Google Scholar 

Xiao T, Sun J, Xing Z, Xie F, Yang L, Ding W. MTFP1 overexpression promotes the growth of oral squamous cell carcinoma by inducing ROS production. Cell Biol Int. 2020;44:821–9.

PubMed  Google Scholar 

Van Huynh T, Rethi L, Rethi L, Chen CH, Chen YJ, Kao YH. The complex interplay between imbalanced mitochondrial dynamics and metabolic disorders in type 2 diabetes. Volume 12. Cells; 2023.

He F, Fang L, Yin Q. miR-363 acts as a tumor suppressor in osteosarcoma cells by inhibiting PDZD2. Oncol Rep. 2019;41:2729–38.

PubMed  PubMed Central  Google Scholar 

Tam CW, Liu VW, Leung WY, Yao KM, Shiu SY. The autocrine human secreted PDZ domain-containing protein 2 (sPDZD2) induces senescence or quiescence of prostate, breast and liver cancer cells via transcriptional activation of p53. Cancer Lett. 2008;271:64–80.

PubMed  Google Scholar 

Jafarpour S, Yazdi M, Nedaeinia R, Vatandoost N, Ferns GA, Salehi R. Status of integrin subunit alpha 4 promoter DNA methylation in colorectal cancer and other malignant tumors: a systematic review and meta-analysis. Res Pharm Sci. 2023;18:231–43.

PubMed  PubMed Central  Google Scholar 

Zhang P, Wang P, Wang Y. ASF1B is an essential prognostic indicator linked to the growth and resistance characteristics of bladder cancer. Tissue Cell. 2024;89:102477.

PubMed  Google Scholar 

Lin C, Sniezek CM, McGann CD, Karki R, Giglio RM, Garcia BA, McFaline-Figeroa JL, Schweppe DK. Defining the heterogeneous molecular landscape of lung cancer cell responses to epigenetic inhibition, bioRxiv, (2024).

Lu G, Lai Y, Wang T, Lin W, Lu J, Ma Y, Chen Y, Ma H, Liu R, Li J. Mitochondrial fission regulator 2 (MTFR2) promotes growth, migration, invasion and tumour progression in breast cancer cells. Aging. 2019;11:10203–19.

PubMed  PubMed Central  Google Scholar 

Lian Z, Pang P, Zhu Y, Du W, Zhou J. Prognostic value and potential mechanism of MTFR2 in lung adenocarcinoma. Front Oncol. 2022;12:832517.

PubMed  PubMed Central  Google Scholar 

Liu J, Wang S, Zhang C, Wei Z, Han D, Song Y, Song X, Chao F, Wu Z, Xu G, Chen G. Anillin contributes to prostate cancer progression through the regulation of IGF2BP1 to promote c-Myc and MAPK signaling. Am J Cancer Res. 2024;14:490–506.

PubMed  PubMed Central  Google Scholar 

Liu Y, Han T, Xu Z, Wu J, Zhou J, Guo J, Miao R, Xing Y, Ge D, Bai Y, Hu D. CDC45 promotes the stemness and metastasis in lung adenocarcinoma by affecting the cell cycle. J Transl Med. 2024;22:335.

PubMed  PubMed Central  Google Scholar 

Wang J, Liu X, Chu H, Chen J. Cell division cycle associated 2 (CDCA2) upregulation promotes the progression of hepatocellular carcinoma in a p53-dependant manner. PeerJ. 2022;10:e13535.

PubMed  PubMed Central  Google Scholar 

Bi H, Hou X, Shen Q, Liu Z, Zhu X, Ma L, Lu J. Knockdown of KIF15 suppresses proliferation of prostate cancer cells and induces apoptosis through PI3K/Akt signaling pathway. Cell Death Discov. 2023;9:326.

PubMed  PubMed Central  Google Scholar 

Yang J, Liu L, Xu X, Zeng H. KIF15 promotes the development and progression of Chordoma via activating PI3K-AKT signalling pathway. Heliyon. 2024;10:e29386.

PubMed  PubMed Central  Google Scholar 

Li X, Wang S, Ruan P, Bajinka O, Zhang W. High expression of KIFC1 is a poor prognostic biomarker and correlates with TP53 mutation in lung cancer. Med (Baltim). 2024;103:e37286.

Google Scholar 

Yu BY, Shi LG, Jiang C, Wang GK, Liu J, Wu TY. Kinesin family member C1 overexpression exerts Tumor-Promoting properties in head and neck squamous cell carcinoma via the Rac1/Wnt/β-catenin pathway. Lab Invest. 2023;103:100134.

PubMed  Google Scholar 

Wu J, Luo D, Tou L, Xu H, Jiang C, Wu D, Que H, Zheng J. NEK2 affects the ferroptosis sensitivity of gastric cancer cells by regulating the expression of HMOX1 through Keap1/Nrf2. Mol Cell Biochem. 2025;480:425–37.

PubMed  Google Scholar 

Chen A, Kim BJ, Mitra A, Vollert CT, Lei JT, Fandino D, Anurag M, Holt MV, Gou X, Pilcher JB, Goetz MP, Northfelt DW, Hilsenbeck SG, Marshall CG, Hyer ML, Papp R, Yin SY, De Angelis C, Schiff R, Fuqua SAW, Ma CX, Foulds CE, Ellis MJ. PKMYT1 is a marker of treatment response and a therapeutic target for CDK4/6 Inhibitor-Resistance in ER + Breast Cancer. Mol Cancer Ther. 2024;23:1494–510.

PubMed  PubMed Central  Google Scholar 

Wang M, Zhang C, Ying Y, Hua M, Meng F, Wang Z, Liu A, Zeng S, Zhang Z, Xu C. PKMYT1 induced by YAP/TEAD1 gives rise to the progression and worse prognosis of bladder cancer. Mol Carcinog. 2024;63:160–72.

PubMed  Google Scholar 

Zhang W, Q. Liang Z, Q. He R, G. Huang Z, M. Wang X, Y. Wei M, L. Su H, S. Liu Z, S. Zheng Y, Y. Huang W, J. Zhang H, W. Dang Y, H. Li S, W. Cheng J, Chen G, He J. The upregulation and transcriptional regulatory mechanisms of extra spindle pole bodies like 1 in bladder cancer: an immunohistochemistry and high-throughput screening evaluation. Heliyon. 2024;10:e31192.

PubMed  PubMed Central  Google Scholar 

Zhang W, Wang Y, Tang Q, Li Z, Sun J, Zhao Z, Jiao D. PAX2 mediated upregulation of ESPL1 contributes to cisplatin resistance in bladder cancer through activating the JAK2/STAT3 pathway. Naunyn Schmiedebergs Arch Pharmacol. 2024;397:6889–901.

PubMed  Google Scholar 

Liu Z, Lian X, Zhang X, Zhu Y, Zhang W, Wang J, Wang H, Liu B, Ren Z, Zhang M, Liu M, Gao Y. ESPL1 is a novel prognostic biomarker associated with the malignant features of glioma. Front Genet. 2021;12:666106.

PubMed  PubMed Central  Google Scholar 

Dong Q, Gong C, Jiang Q, Liu Y, Hu Y, Wang D, Liu H, Zheng T, Song C, Wang T, Ju R, Wang C, Song D, Liu Z, Liu Y, Lu Y, Fan J, Liu M, Gao T, An Z, Zhang J, Li P, Cao C, Liu X. Identification of differentially expressed tumour-related genes regulated by UHRF1-driven DNA methylation. Sci Rep. 2024;14:18371.

PubMed  PubMed Central 

Comments (0)

No login
gif