Rosenfeld E, Ganguly A, De Leon DD. Congenital hyperinsulinism disorders: genetic and clinical characteristics. Am J Med Genet Part C: Seminars Med Genet. 2019;181(4):682–92.
Velde CD, Reigstad H, Tjora E, Guthe HJT, Hansen EV, Molven A, Njølstad PR. Congenital hyperinsulinism. Tidsskr nor Laegeforen 2023: 143(18).
Maiorana A, Dionisi-Vici C. Hyperinsulinemic hypoglycemia: clinical, molecular and therapeutical novelties. J Inherit Metab Dis. 2017;40(4):531–42.
Article CAS PubMed Google Scholar
Clayton PT, Eaton S, Aynsley-Green A, Edginton M, Hussain K, Krywawych S, Datta V, Malingré HEM, Berger R, van den Berg IET. Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of β-oxidation in insulin secretion. J Clin Invest. 2001;108(3):457–65.
Article CAS PubMed PubMed Central Google Scholar
Molven A, Matre GE, Duran M, Wanders RJ, Rishaug U, Njølstad PR, Jellum E, Søvik O. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes. 2004;53(1):221–7.
Article CAS PubMed Google Scholar
Velasco K, St-Louis JL, Hovland HN, Thompson N, Ottesen A, Choi MH, Pedersen L, Njølstad PR, Arnesen T, Fjeld K, et al. Functional evaluation of 16 SCHAD missense variants: only amino acid substitutions causing congenital hyperinsulinism of infancy lead to loss-of-function phenotypes in vitro. J Inherit Metab Dis. 2021;44(1):240–52.
Article CAS PubMed Google Scholar
Molven A, Helgeland G, Sandal T, Njølstad PR. The Molecular Genetics and Pathophysiology of Congenital Hyperinsulinism Caused by Short-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency. In: Monogenic Hyperinsulinemic Hypoglycemia Disorders. 2012;21:137–145.
Li C, Chen P, Palladino A, Narayan S, Russell LK, Sayed S, Xiong G, Chen J, Stokes D, Butt YM, et al. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J Biol Chem. 2010;285(41):31806–18.
Article CAS PubMed PubMed Central Google Scholar
St-Louis JL, El Jellas K, Velasco K, Slipp BA, Hu J, Helgeland G, Steine SJ, De Jesus DF, Kulkarni RN, Molven A. Deficiency of the metabolic enzyme SCHAD in pancreatic beta-cells promotes amino acid-sensitive hypoglycemia. J Biol Chem. 2023;299(8):104986.
Article CAS PubMed PubMed Central Google Scholar
Filling C, Keller B, Hirschberg D, Marschall HU, Jörnvall H, Bennett MJ, Oppermann U. Role of short-chain hydroxyacyl coa dehydrogenases in SCHAD deficiency. Biochem Biophys Res Commun. 2008;368(1):6–11.
Article CAS PubMed Google Scholar
Stanley CA, Lieu YK, Hsu BYL, Burlina AB, Greenberg CR, Hopwood NJ, Perlman K, Rich BH, Zammarchi E, Poncz M. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med. 1998;338(19):1352–7.
Article CAS PubMed Google Scholar
Narayan SB, Master SR, Sireci AN, Bierl C, Stanley PE, Li C, Stanley CA, Bennett MJ. Short-chain 3-hydroxyacyl-coenzyme a dehydrogenase associates with a protein super-complex integrating multiple metabolic pathways. PLoS ONE 2012: 7(4).
Jacob JT, Coulombe PA, Kwan R, Omary MB. Types I and II keratin intermediate filaments. Cold Spring Harb Perspect Biol 2018: 10(4).
Alam CM, Silvander JS, Daniel EN, Tao GZ, Kvarnstrom SM, Alam P, Omary MB, Hanninen A, Toivola DM. Keratin 8 modulates beta-cell stress responses and normoglycaemia. J Cell Sci. 2013;126(Pt 24):5635–44.
CAS PubMed PubMed Central Google Scholar
Silvander JSG, Kvarnstrom SM, Kumari-Ilieva A, Shrestha A, Alam CM, Toivola DM. Keratins regulate beta-cell mitochondrial morphology, motility, and homeostasis. FASEB J. 2017;31(10):4578–87.
Article CAS PubMed Google Scholar
Baghestani S, Haldin C, Kosijer P, Alam CM, Toivola DM. β-cell keratin 8 maintains islet mechanical integrity, mitochondrial ultrastructure and β-cell glucose transporter 2 plasma membrane targeting. Am J Physiol Cell Physiol. 2024;327(2):C462–C476.
Vojtek AB, Hollenberg SM. Ras-Raf interaction: two-hybrid analysis. Methods Enzymol. 1995;255:331–42.
Article CAS PubMed Google Scholar
Bartel P, Chien C-T, Sternglanz R, Fields S, Hartley DA. Using the two-hybrid system to detect protein-protein interactions. In: Hartley DA editor. Cellular interactions in development: a practical approach. Oxford University Press; 1993. p. 153–79.
Fromont-Racine M, Rain JC, Legrain P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet. 1997;16(3):277–82.
Article CAS PubMed Google Scholar
Formstecher E, Aresta S, Collura V, Hamburger A, Meil A, Trehin A, Reverdy C, Betin V, Maire S, Brun C, et al. Protein interaction mapping: a Drosophila case study. Genome Res. 2005;15(3):376–84.
Article CAS PubMed PubMed Central Google Scholar
Ravassard P, Hazhouz Y, Pechberty S, Bricout-Neveu E, Armanet M, Czernichow P, Scharfmann R. A genetically engineered human pancreatic beta cell line exhibiting glucose-inducible insulin secretion. J Clin Invest. 2011;121(9):3589–97.
Article CAS PubMed PubMed Central Google Scholar
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72.
Article CAS PubMed Google Scholar
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13(9):731–40.
Article CAS PubMed Google Scholar
Alam MS. Proximity ligation assay (PLA). Curr Protoc Immunol. 2018;123(1):e58.
Article PubMed PubMed Central Google Scholar
Klickstein JA, Mukkavalli S, Raman M. AggreCount: an unbiased image analysis tool for identifying and quantifying cellular aggregates in a spatially defined manner. J Biol Chem. 2020;295(51):17672–83.
Article CAS PubMed PubMed Central Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.
Article CAS PubMed Google Scholar
Baribault H, Penner J, Iozzo RV, Wilson-Heiner M. Colorectal hyperplasia and inflammation in keratin 8-deficient FVB/N mice. Genes Dev. 1994;8(24):2964–73.
Article CAS PubMed Google Scholar
Helenius TO, Misiorek JO, Nystrom JH, Fortelius LE, Habtezion A, Liao J, Asghar MN, Zhang H, Azhar S, Omary MB, et al. Keratin 8 absence down-regulates colonocyte HMGCS2 and modulates colonic ketogenesis and energy metabolism. Mol Biol Cell. 2015;26(12):2298–310.
Article CAS PubMed PubMed Central Google Scholar
Gotoh M, Ohzato H, Dono K, Kawai M, Yamamoto H, Kanai T, et al. Successful islet isolation from preserved rat pancreas following pancreating ductal collagenase at the time of harvesting. Horm Metab Res Suppl.1990; 25:1–4.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. Highly accurate protein structure prediction with alphafold. Nature. 2021;596(7873):583–9.
Article CAS PubMed PubMed Central Google Scholar
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, et al. Accurate structure prediction of biomolecular interactions with alphafold 3. Nature. 2024;630(8016):493–500.
Article CAS PubMed PubMed Central Google Scholar
Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH, Ferrin TE. UCSF chimerax: tools for structure Building and analysis. Protein Sci. 2023;32(11):e4792.
Article CAS PubMed PubMed Central Google Scholar
Elfmann C, Stulke J. PAE viewer: a webserver for the interactive visualization of the predicted aligned error for multimer structure predictions and crosslinks. Nucleic Acids Res. 2023;51(W1):W404–10.
Article CAS PubMed PubMed Central Google Scholar
Xu Y, Li H, Jin YH, Fan J, Sun F. Dimerization interface of 3-hydroxyacyl-CoA dehydrogenase tunes the formation of its catalytic intermediate. PLoS ONE. 2014;9(4):e95965.
Comments (0)