Neuroprotective effect of ciclopirox olamine in retinal ischemia/reperfusion injury

Eltzschig HK, Eckle T. Ischemia and reperfusion-from mechanism to translation. Nat Med. 2011;17:1391–401.

Article  CAS  PubMed  Google Scholar 

Ruan Y, Jiang S, Musayeva A, Gericke A. Oxidative stress and vascular dysfunction in the retina: therapeutic strategies. Antioxidants. 2020;9:761.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 2011;123:594–604.

Article  CAS  PubMed  Google Scholar 

Minhas G, Sharma J, Khan N. Cellular stress response and immune signaling in retinal ischemia–reperfusion injury. Front Immunol. 2016;7:444.

Article  PubMed  PubMed Central  Google Scholar 

Abcouwer SF, Shanmugam S, Muthusamy A, Lin C, Kong D, Hager H, et al. Inflammatory resolution and vascular barrier restoration after retinal ischemia reperfusion injury. J Neuroinflamm. 2021;18:186.

Article  CAS  Google Scholar 

Zhang K, Wang T, Sun GF, Xiao JX, Jiang LP, Tou FF, et al. Metformin protects against retinal ischemia/reperfusion injury through AMPK-mediated mitochondrial fusion. Free Radical Bio Med. 2023;205:47–61.

Article  CAS  Google Scholar 

Qin X, Li N, Zhang M, Lin S, Zhu J, Xiao D, et al. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway. Nanoscale. 2019;11:20667–75.

Article  CAS  PubMed  Google Scholar 

Yokota H, Narayanan SP, Zhang W, Liu H, Rojas M, Xu Z, et al. Neuroprotection from retinal ischemia/reperfusion injury by NOX2 NADPH oxidase deletion. Invest Ophthalmol Vis Sci. 2011;52:8123–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han Y, Zhu X, Ye Y, Deng K, Zhang X, Song Y. Ribonuclease attenuates retinal ischemia reperfusion injury through inhibition of inflammatory response and apoptosis in mice. Int Immunopharmacol. 2020;85:106608.

Article  CAS  PubMed  Google Scholar 

Hui Q, Karlstetter M, Xu Z, Yang J, Zhou L, Eilken HM, et al. Inhibition of the Keap1-Nrf2 protein-protein interaction protects retinal cells and ameliorates retinal ischemia-reperfusion injury. Free Radical Bio Med. 2020;146:181–8.

Article  CAS  Google Scholar 

Shi Y, Liu Y, Wu C, Liu X, Hu W, Yang Z, et al. N, N-Dimethyl-3β-hydroxycholenamide attenuates neuronal death and retinal inflammation in retinal ischemia/reperfusion injury by inhibiting Ninjurin 1. J Neuroinflamm. 2023;20:91.

Article  CAS  Google Scholar 

Li X, Ye Z, Pei S, Zheng D, Zhu L. Neuroprotective effect of minocycline on rat retinal ischemia-reperfusion injury. Mol Vis. 2021;27:438–56.

CAS  PubMed  PubMed Central  Google Scholar 

Dreffs A, Lin CM, Liu X, Shanmugam S, Abcouwer SF, Kern TS, et al. All-trans-retinaldehyde contributes to retinal vascular permeability in ischemia reperfusion. Invest Ophthalmol Vis Sci. 2020;61:8.

Article  PubMed  PubMed Central  Google Scholar 

Wan P, Su W, Zhang Y, Li Z, Deng C, Li J, et al. LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. Cell Death Differ. 2020;27:176–91.

Article  CAS  PubMed  Google Scholar 

Ji K, Li Z, Lei Y, Xu W, Ouyang L, He T, et al. Resveratrol attenuates retinal ganglion cell loss in a mouse model of retinal ischemia reperfusion injury via multiple pathways. Exp Eye Res. 2021;209: 108683.

Article  CAS  PubMed  Google Scholar 

Gong L, Pasquale LR, Wiggs JL, Pan L, Yang Z, Wu M, et al. Description of a nonhuman primate model of retinal ischemia/reperfusion injury. Transl Vis Sci Technol. 2023;12:14.

Article  PubMed  PubMed Central  Google Scholar 

Seyedsadr M, Wang Y, Elzoheiry M, et al. IL-11 induces NLRP3 inflammasome activation in monocytes and inflammatory cell migration to the central nervous system. Proc Natl Acad Sci USA. 2023;120:e2221007120.

Article  PubMed  PubMed Central  Google Scholar 

Subissi A, Monti D, Togni G, Mailland F. Ciclopirox: recent nonclinical and clinical data relevant to its use as a topical antimycotic agent. Drugs. 2010;70:2133–52.

Article  PubMed  Google Scholar 

Shen T, Huang S. Repositioning the old fungicide ciclopirox for new medical uses. Curr Pharm Des. 2016;22:4443–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan T, Marin-Garcia J, Damle S, Weiss HR. Hypoxia-inducible factor-1 improves inotropic responses of cardiac myocytes in ageing heart without affecting mitochondrial activity. Exp Physiol. 2010;95:712–22.

Article  CAS  PubMed  Google Scholar 

Linden T, Katschinski DM, Eckhardt K, Scheid A, Pagel H, Wenger RH. The antimycotic ciclopirox olamine induces HIF-1α stability, VEGF expression, and angiogenesis. FASEB J. 2003;17:761–3.

Article  CAS  PubMed  Google Scholar 

Bühler K, Plaisance I, Dieterle T, Brink M. The human urocortin 2 gene is regulated by hypoxia: identification of a hypoxia-responsive element in the 3′-flanking region. Biochem J. 2009;424:119–27.

Article  PubMed  Google Scholar 

Singh S, Goo JI, Noh H, Lee SJ, Kim MW, Park H, et al. Discovery of a novel series of N-hydroxypyridone derivatives protecting astrocytes against hydrogen peroxide-induced toxicity via improved mitochondrial functionality. Bioorg Med Chem. 2017;25:1394–405.

Article  CAS  PubMed  Google Scholar 

Ma TC, Langley B, Ko B, Wei N, Gazaryan IG, Zareen N, et al. A screen for inducers of p21(waf1/cip1) identifies HIF prolyl hydroxylase inhibitors as neuroprotective agents with antitumor properties. Neurobiol Dis. 2013;49:13–21.

Article  PubMed  Google Scholar 

Hu L, Feng H, Zhang H, Yu S, Zhao Q, Wang W, et al. Development of novel N-hydroxypyridone derivatives as potential anti-ischemic stroke agents. J Med Chem. 2020;63:1051–67.

Article  CAS  PubMed  Google Scholar 

Feng H, Hu L, Zhu H, Tao L, Wu L, Zhao Q, et al. Repurposing antimycotic ciclopirox olamine as a promising anti-ischemic stroke agent. Acta Pharm Sin B. 2020;10:434–46.

Article  CAS  PubMed  Google Scholar 

Qin Q, Yu N, Gu Y, Ke W, Zhang Q, Liu X, et al. Inhibiting multiple forms of cell death optimizes ganglion cells survival after retinal ischemia reperfusion injury. Cell Death Dis. 2022;13:507.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang B, Hu C, Yang X, Du F, Feng Y, Li H, et al. Inhibition of GSK-3β activation protects SD rat retina against N-methyl-N-nitrosourea-induced degeneration by modulating the Wnt/β-catenin signaling pathway. J Mol Neurosci. 2017;63:233–42.

Article  CAS  PubMed  Google Scholar 

Xu B, Wang T, Xiao J, Dong W, Wen H, Wang X, et al. FCPR03, a novel phosphodiesterase 4 inhibitor, alleviates cerebral ischemia/reperfusion injury through activation of the AKT/GSK3β/ β-catenin signaling pathway. Biochem Pharmacol. 2019;163:234–49.

Article  CAS  PubMed  Google Scholar 

Xu J, Guo Y, Liu Q, Yang H, Ma M, Yu J, et al. Pregabalin mediates retinal ganglion cell survival from retinal ischemia/reperfusion injury via the Akt/GSK3β/β-catenin signaling pathway. Invest Ophthalmol Vis Sci. 2022;63:7.

PubMed  PubMed Central  Google Scholar 

Purnyn H. The mammalian retina: structure and blood supply. Neurophysiology. 2013;45:266–76.

Article  CAS 

Comments (0)

No login
gif