The response surface method enables efficient optimization of induction parameters for the production of bioactive peptides in fed-batch bioreactors using

Basu A, Li X, Leong SS (2011) Refolding of proteins from inclusion bodies: rational design and recipes. Appl Microbiol Biotechnol 92:241–251. https://doi.org/10.1007/s00253-011-3513-y

Article  PubMed  CAS  Google Scholar 

Belgi A, Hossain MA, Tregear WG, Wade G, Wade D (2011) The chemical synthesis of insulin: from the past to the present. Immun Endocr Metab Agents Med Chem (Discontinued) 11:40–47. https://doi.org/10.2174/187152211794519412

Article  CAS  Google Scholar 

Bentley WE, Davis RH, Kompala DS (1991) Dynamics of induced CAT expression in E. coli. Biotechnol Bioeng 38:749–760. https://doi.org/10.1002/bit.260380709

Article  PubMed  CAS  Google Scholar 

Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T (2021) Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Front Bioeng Biotechnol 9:630551. https://doi.org/10.3389/fbioe.2021.630551

Article  PubMed  PubMed Central  Google Scholar 

Buchs J (2001) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7:91–98. https://doi.org/10.1016/s1369-703x(00)00106-6

Article  PubMed  CAS  Google Scholar 

Chandrudu S, Simerska P, Toth I (2013) Chemical methods for peptide and protein production. Molecules 18:4373–4388. https://doi.org/10.3390/molecules18044373

Article  PubMed  PubMed Central  CAS  Google Scholar 

Czitrom V (1999) One-factor-at-a-time versus designed experiments. Am Stat 53(2):126–131. https://doi.org/10.1080/00031305.1999.10474445

Article  Google Scholar 

de Groot NS, Ventura S (2006) Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Lett 580:6471–6476. https://doi.org/10.1016/j.febslet.2006.10.071

Article  PubMed  CAS  Google Scholar 

Dolnik V (2008) Capillary electrophoresis of proteins 2005–2007. Electrophoresis 29:143–156. https://doi.org/10.1002/elps.200700584

Article  PubMed  CAS  Google Scholar 

Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128. https://doi.org/10.1016/j.drudis.2014.10.003

Article  PubMed  CAS  Google Scholar 

Francis DM, Page R (2010) Strategies to optimize protein expression in E. coli. Curr Protoc Protein Sci 61(1):21–25. https://doi.org/10.1002/0471140864.ps0524s61

Article  Google Scholar 

Gao M, Ma C, Liu W, Zhu J, Tian H, Gao X, Yao W (2010) Production and purification of an analog of glucagon-like peptide-1 by auto-induction and on-column cleavage in Escherichia coli. World J Microbiol Biotechnol 26:1675–1682. https://doi.org/10.1007/s11274-010-0345-3

Article  CAS  Google Scholar 

Gibisch M, Muller M, Tauer C, Albrecht B, Hahn R, Cserjan-Puschmann M, Striedner G (2024) A production platform for disulfide-bonded peptides in the periplasm of Escherichia coli. Microb Cell Fact 23:166. https://doi.org/10.1186/s12934-024-02446-6

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gil-Garcia M, Navarro S, Ventura S (2020) Coiled-coil inspired functional inclusion bodies. Microb Cell Fact 19:117. https://doi.org/10.1186/s12934-020-01375-4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gomes L, Monteiro G, Mergulhao F (2020) The impact of IPTG induction on plasmid stability and heterologous protein expression by Escherichia Coli biofilms. Int J Mol Sci 21(2):576. https://doi.org/10.3390/ijms21020576

Article  PubMed  PubMed Central  CAS  Google Scholar 

Govender K, Naicker T, Lin J, Baijnath S, Chuturgoon AA, Abdul NS, Docrat T, Kruger HG, Govender T (2020) A novel and more efficient biosynthesis approach for human insulin production in Escherichia coli (E. coli). AMB Express 10:43. https://doi.org/10.1186/s13568-020-00969-w

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gruber CC, Babu VMP, Livingston K, Joisher H, Walker GC (2021) Degradation of the Escherichia coli essential proteins dapb and dxr results in oxidative stress, which contributes to lethality through incomplete base excision repair. mBio 13:e0375621. https://doi.org/10.1128/mbio.03756-21

Article  PubMed  Google Scholar 

Gutierrez-Gonzalez M, Farias C, Tello S, Perez-Etcheverry D, Romero A, Zuniga R, Ribeiro CH, Lorenzo-Ferreiro C, Molina MC (2019) Optimization of culture conditions for the expression of three different insoluble proteins in Escherichia coli. Sci Rep 9:16850. https://doi.org/10.1038/s41598-019-53200-7

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hashemi A, Basafa M, Behravan A (2022) Machine learning modeling for solubility prediction of recombinant antibody fragment in four different E. coli strains. Sci Rep 12:5463. https://doi.org/10.1038/s41598-022-09500-6

Article  PubMed  PubMed Central  CAS  Google Scholar 

Heinisch L, Krause M, Roth A, Barth H, Schmidt H (2021) Cytotoxic effects of recombinant StxA2-His in the absence of its corresponding B-subunit. Toxins (Basel) 13(5):307. https://doi.org/10.3390/toxins13050307

Article  PubMed  CAS  Google Scholar 

Ilangala AB, Lechanteur A, Fillet M, Piel G (2021) Therapeutic peptides for chemotherapy: trends and challenges for advanced delivery systems. Eur J Pharm Biopharm 167:140–158. https://doi.org/10.1016/j.ejpb.2021.07.010

Incir I, Kaplan O (2024) Escherichia coli in the production of biopharmaceuticals. Biotechnol Appl Biochem 72:528–541. https://doi.org/10.1002/bab.2664

James J, Yarnall B, Koranteng A, Gibson J, Rahman T, Doyle DA (2021) Protein over-expression in Escherichia coli triggers adaptation analogous to antimicrobial resistance. Microb Cell Fact 20:13. https://doi.org/10.1186/s12934-020-01462-6

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kasli IM, Thomas ORT, Overton TW (2019) Use of a design of experiments approach to optimise production of a recombinant antibody fragment in the periplasm of Escherichia coli: selection of signal peptide and optimal growth conditions. AMB Express 9:5. https://doi.org/10.1186/s13568-018-0727-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kiefhaber T, Rudolph R, Kohler HH, Buchner J (1991) Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Biotechnology (NY) 9:825–829. https://doi.org/10.1038/nbt0991-825

Article  CAS  Google Scholar 

Kornakov IA, Khasanshina ZR, Senichkina DA, Filipenko AA, Lunev IS, Drai RV (2023) Optimisation of induction conditions for a bacterial strain producing proinsulin aspart. Biological Products Prevention, Diagnosis, Treatment 23:219–230. https://doi.org/10.30895/2221-996X-2023-23-2-1-14

Article  CAS  Google Scholar 

Kurien BT, Scofield RH (2012) Protein electrophoresis: methods and protocols. Totowa

Lamer T, Vederas JC (2023) Simplified cloning and isolation of peptides from “sandwiched” SUMO-peptide-intein fusion proteins. BMC Biotechnol 23:11. https://doi.org/10.1186/s12896-023-00779-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Latypov VF, Kornakov IA, Robustova SE, Khomutova OS, Rodionov PP (2020) Recombinant plasmid DNA pF646 encoding a hybrid polypeptide containing insulin aspart, and Escherichia coli strain – producer of the hybrid polypeptide containing insulin aspart. Patent RU2729353C1. Russia

Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26:2700–2707. https://doi.org/10.1016/j.bmc.2017.06.052

Article  PubMed  CAS  Google Scholar 

Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–95. https://doi.org/10.1016/0167-7799(96)80930-9

Article  PubMed  CAS  Google Scholar 

Li J, Jaitzig J, Hilli

Comments (0)

No login
gif