DnaK interacts with bovine transferrin, lactoferrin, and hemoglobin as a putative iron acquisition mechanism

Abascal EN, Guerra AC, Vázquez AS, Tenorio VR, Cruz CV, Zenteno E, Contreras GP, Pacheco SV (2009) Identification of iron-acquisition proteins of Avibacterium paragallinarum. Avian Pathol 38:209–213

Article  CAS  PubMed  Google Scholar 

Anderson JE, Sparling PF, Cornelissen CN (1994) Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization. J Bacteriol 176:3162–3170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blackall PJ, Rogers DG, Yamamoto R (1990) Outer-membrane proteins of Haemophilus paragallinarum. Avian Dis 34:871–877

Article  CAS  PubMed  Google Scholar 

Chart H, Smith HR, La Ragione RM, Woodward MJ (2000) An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5α and EQ1. J Appl Microbiol 89:1048–1058

Article  CAS  PubMed  Google Scholar 

Cockayne A, Hill PJ, Powell NB, Bishop K, Sims C, Williams P (1998) Molecular cloning of a 32-kilodalton lipoprotein component of a novel iron-regulated Staphylococcus epidermidis ABC transporter. Infect Immun 66:3767–3774. https://doi.org/10.1128/IAI.66.8.3767-3774.1998

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cook-Libin S, Sykes EME, Kornelsen V, Kumar A (2022) Iron acquisition mechanisms and their role in the virulence of Acinetobacter baumannii. Infect Immun 90(10):e0022322. https://doi.org/10.1128/iai.00223-22

Article  CAS  PubMed  Google Scholar 

Cornelissen CN (2003) Transferrin-iron uptake by Gram-negative bacteria. Front Biosci 8:d836–d847

Article  CAS  PubMed  Google Scholar 

Davalos D, Akassoglou K (2012) Fibrinogen as a key regulator in inflammation in disease. Semin Immunopathol 34:43–62. https://doi.org/10.1007/s00281-011-0290-8

Article  CAS  PubMed  Google Scholar 

De la Cruz Montoya AH, Ramírez-Paz y Puente GA, Vazquez-Cruz C, Montes-García JF, Negrete-Abascal E (2023) Actinobacillus seminis associated metalloprotease degrades bovine fibrinogen and IgG. Pak Vet J 43(2): 276–282. https://doi.org/10.29261/pakvetj/2023.020

Ellermann M, Arthur JC (2017) Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic Biol Med 105:68–78. https://doi.org/10.1016/j.freeradbiomed.2016.10.489

Article  CAS  PubMed  Google Scholar 

García JFM, Rojas L, Zenteno E, Cruz CV, Abascal EN (2020) Characterization of Actinobacillus seminis biofilm formation. Antonie Van Leeuwenhoek 113:1371–1383. https://doi.org/10.1007/s10482-020-01447-w

Article  CAS  PubMed  Google Scholar 

Ghasemi A, Jeddi-Tehrani M, Mautner J, Salari MH, Zarnani AH (2014) Immunization of mice with a novel recombinant molecular chaperon confers protection against Brucella melitensis infection. Vaccine 32:6659–6666. https://doi.org/10.1016/j.vaccine.2014.09.013

Article  CAS  PubMed  Google Scholar 

Ghazaei C (2017) Role and mechanism of the Hsp70 molecular chaperone machines in bacterial pathogens. J Med Microbiol 66:259–265. https://doi.org/10.1099/jmm.0.000429

Article  CAS  PubMed  Google Scholar 

González López MA, Velázquez Guadarrama N, Romero Espejel ME, Olivares Trejo JJ (2013) Helicobacter pylori secretes the chaperonin GroEL (HSP60), which binds iron. FEBS Lett 587:1823–1828

Article  PubMed  Google Scholar 

Gouletsou PG, Fthenakis GC (2015) Microbial diseases of the genital system of rams or bucks. Vet Microbiol 181:130–135. https://doi.org/10.1016/j.vetmic.2015.07.016

Article  CAS  PubMed  Google Scholar 

Hassan S, Hassan FU, Saif-Ur Rehman M (2020) Nano-particles of trace minerals in poultry nutrition: potential applications and future prospects. Biol Trace Elem Res 195:591–612. https://doi.org/10.1007/s12011-019-01862-9

Article  CAS  PubMed  Google Scholar 

Healey MC, Hwang HH, Elsner YY, Johnston AV (1991) A model for demonstrating the adhesion of Actinobacillus seminis to epithelial cells. Can J Vet Res 55:121–127

CAS  PubMed  PubMed Central  Google Scholar 

Jeffery C (2018) Intracellular proteins moonlighting as bacterial adhesion factors. AIMS Microbiol 4:362–376. https://doi.org/10.3934/microbiol.2018.2.362

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858. https://doi.org/10.1038/nprot.2015.053

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kittigul L, Suthachana S, Kittigul C, Pengruangrojanachai V (1998) Immunoglobulin M-capture biotin-streptavidin enzyme-linked immunosorbent assay for detection of antibodies to dengue viruses. Am J Trop Med Hyg 59:352–356

Article  CAS  PubMed  Google Scholar 

Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) Procheck: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

Article  CAS  Google Scholar 

Lundrigan MD, Arceneaux JEL, Zhu W, Rove Byers B (1997) Enhanced hydrogen peroxide sensitivity and altered stress protein expression in iron-starved Mycobacterium smegmatis. Biometals 10:215–225

Article  CAS  PubMed  Google Scholar 

Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(1992):83–85

Article  PubMed  Google Scholar 

Montes-García JF, Chincoya Martinez DA, Vaca Pacheco S, Vázquez Cruz C, Sánchez Alonso P, Xicohtencatl Cortes J, Trujillo-Ruiz H, Negrete-Abascal E (2018) Identification of two adhesins of Actinobacillus seminis. Small Rum Res 167:100–103. https://doi.org/10.1016/j.smallrumres.2018.08.013

Article  Google Scholar 

Montes-García JF, Delgado-Tapia WA, Vazquez-Cruz C, Vaca S, Negrete-Abascal E (2019) Actinobacillus seminis GroEL-homologous protein agglutinates sheep erythrocytes. Antonie Van Leeuwenhoek 112:1655–1662. https://doi.org/10.1007/s10482-019-01292-6

Article  PubMed  Google Scholar 

Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW (2021) An organ system-based synopsis of Pseudomonas aeruginosa virulence. Virulence 12:1469–1507. https://doi.org/10.1080/21505594.2021.1926408

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morton DJ, Turman EJ, Hensley PD, VanWagoner TM, Seale TW, Whitby PW, Stull TL (2010) Identification of a siderophore utilization locus in nontypeable Haemophilus influenzae. BMC Microbiol 10:113. https://doi.org/10.1186/1471-2180-10-113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moustacas VS, Silva TM, Costa LF, Carvalho Júnior CA, Santos RL, Paixäo TA (2014) Clinical and pathological changes in rams experimentally infected with Actinobacillus seminis and Histophilus somni. ScientificWorldJournal 2014:241452. https://doi.org/10.1155/2014/241452

Article  PubMed  PubMed Central  Google Scholar 

Negrete-Abascal E, Montes-Garcia F, Vaca-Pacheco S et al (2018) Genome sequence of Actinobacillus seminis strain ATCC 15768, a reference strain of ovine pathogens that causes infections in reproductive organs. Genome Announc 6(2):e01453–17. https://doi.org/10.1128/genomeA.01453-17

Palmer LD, Skaar EP (2016) Transition metals and virulence in bacteria. Annu Re Genet 50:67–91. https://doi.org/10.1146/annurev-genet-120215-035146

Article  CAS  Google Scholar 

Ramírez-Paz-Y-Puente GA, Chávez-Flores CI, Montes-García JF, Sanchez-Alonso PG, Cobos-Justo ME, Vázquez-Cruz C, Zenteno E, Negrete-Abascal E (2023) Testosterone and estradiol modify the expression of adhesins and biofilm formation in Actinobacillus seminis. FEMS Microbiol Lett 370:fnad048. https://doi.org/10.1093/femsle/fnad048

Article  CAS 

Comments (0)

No login
gif