Alpay-Karaoglu S, Ozgumus OB, Sevim E, Kolaylı F, Sevim A, Yesilgil P (2007) Investigation of antibiotic resistance profile and TEM-type β-lactamase gene carriage of ampicillin-resistant Escherichia coli strains isolated from drinking water. Ann Microbiol 57:281–288. https://doi.org/10.1007/BF03175221
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Article CAS PubMed Google Scholar
Baylan O (2010) Fosfomycin: past, present and future. Mikrobiyol Bul 44:311–321
Benzerara Y, Gallah S, Hommeril B, Genel N, Decre D, Rottman M, Arlet G (2017) Emergence of plasmid-mediated fosfomycin-resistance genes among Escherichia coli isolates. France Emerg Infect Dis 23(9):1564–1567. https://doi.org/10.3201/eid2309.170560
Article CAS PubMed Google Scholar
Bi W, Li B, Song J, Zhang X, Liu H, Lu H, Zhou T, Cao J (2017) Antimicrobial susceptibility and mechanisms of fosfomycin resistance in extended-spectrum b-lactamase-producing Escherichia coli strains from urinary tract infections in Wenzhou, China. Int J Antimicrob Agents 50:29–34. https://doi.org/10.1016/j.ijantimicag.2017.02.010
Article CAS PubMed Google Scholar
Cao XL, Shen H, Xu YY, Xu XJ, Zhang ZF, Cheng L, Chen J-H, Arakawa Y (2017) High prevalence of fosfomycin resistance gene fosA3 in blaCTX-M-harbouring Escherichia coli from urine in a Chinese tertiary hospital during 2010–2014. Epidemiol Infect 45:818–824. https://doi.org/10.1017/S0950268816002879
Cattoir V, Guérin F (2018) How is fosfomycin resistance developed in Escherichia coli? Future Microbiol 13(16):1693–1696. https://doi.org/10.2217/fmb-2018-0294
Article CAS PubMed Google Scholar
Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63(3):219–228. https://doi.org/10.1016/j.mimet.2005.03.018
Article CAS PubMed Google Scholar
Castaneda-Garcia A, Blazquez J, Rodriguez-Rojas A (2013) Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics (Basel) 2:217–236. https://doi.org/10.3390/antibiotics2020217
Article CAS PubMed Google Scholar
Díez-Aguilar M, Cantón R (2019) New microbiological aspects of fosfomycin. Rev Esp Quimioter 32(Suppl 1):8–18
PubMed PubMed Central Google Scholar
The European Committee on Antimicrobial Susceptibility Testing (2019) Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0. http:// www. eucast. org. Accessed 9.12.2019
Falagas ME, Athanasaki F, Voulgaris GL, Triarides NA, Vardakas KZ (2019) Resistance to fosfomycin: mechanisms, frequency and clinical consequences. Int J Antimicrob Agents 53:22–28. https://doi.org/10.1016/j.ijantimicag.2018.09.013
Article CAS PubMed Google Scholar
Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE (2010) Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis 10:43–50. https://doi.org/10.1016/S1473-3099(09)70325-1
Article CAS PubMed Google Scholar
Ho PL, Chan J, Lo WU, Lai EL, Cheung YY, Lau TC, Chow KH (2013) Prevalence and molecular epidemiology of plasmid-mediated fosfomycin resistance genes among blood and urinary Escherichia coli isolates. J Med Microbiol 62:1707–1713. https://doi.org/10.1099/jmm.0.062653-0
Article CAS PubMed Google Scholar
Hou J, Yang X, Zeng Z, Lv L, Yang T, Lin D, Liu JH (2013) Detection of the plasmid-encoded fosfomycin resistance gene fosA3 in Escherichia coli of food-animal origin. J Antimicrob Chemother 68:766–770. https://doi.org/10.1093/jac/dks465
Article CAS PubMed Google Scholar
Jiang W, Men S, Kong L, Ma S, Yang Y, Wang Y, Yuan Q, Cheng G, Zou W, Wang H (2017) Prevalence of plasmid mediated fosfomycin resistance gene fosA3 among CTX-M-producing Escherichia coli isolates from chickens in China. Foodborne Pathog Dis 14(4):210–218. https://doi.org/10.1089/fpd.2016.2230
Article CAS PubMed Google Scholar
Jiang Y, Shen P, Wei Z, Liu L, He F, Shi K, Wang Y, Wang H, Yu Y (2015) Dissemination of a clone carrying a fosA3-harbouring plasmid mediates high fosfomycin resistance rate of KPC-producing Klebsiella pneumoniae in China. Int J Antimicrob Agents 45:66–70. https://doi.org/10.1016/j.ijantimicag.2014.08.010
Article CAS PubMed Google Scholar
Koken G, Asık G, Ciftci IH, Cetinkaya Z, Aktepe OC, Yılmazer M (2008) Efficiency of fosfomycin trometamol on Escherichia coli strains from community acquired urinary tract infections. ANKEM 22:23–27
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096
Article CAS PubMed PubMed Central Google Scholar
Lee JC, Lee NY, Lee HC, Huang WH, Tsui KC, Chang CM, Lee CC, Chen PL, Wu CJ, Hsueh PR, Ko WC (2012a) Clinical characteristics of urosepsis caused by extended-spectrum beta-lactamase-producing Escherichia coli or Klebsiella pneumoniae and their emergence in the community. J Microbiol Immunol Infect 45:127–133. https://doi.org/10.1016/j.jmii.2011.09.029
Article CAS PubMed Google Scholar
Lee S-Y, Park Y-J, Yu JK, Jung S, Kim Y, Jeong SH, Arakawa Y (2012b) Prevalence of acquired fosfomycin resistance among extended-spectrum b-lactamase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Korea and IS 26-composite transposon surrounding fosA3. J Antimicrob Chemother 67:2843–2847. https://doi.org/10.1093/jac/dks319
Article CAS PubMed Google Scholar
Liu HY, Lin HC, Lin YC, Yu SH, Wu WH, Lee YJ (2011) Antimicrobial susceptibilities of urinary extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae to fosfomycin and nitrofurantoin in a teaching hospital in Taiwan. J Microbiol Immunol Infect 44:364–368. https://doi.org/10.1016/j.jmii.2010.08.012
Article CAS PubMed Google Scholar
Martín-Gutiérrez G, Docobo-Pérez F, Rodriguez-Beltrán J, Rodríguez-Martínez JM, Aznar J, Pascual A, Blázquez J (2018) Urinary tract conditions affect fosfomycin activity against Escherichia coli strains harboring chromosomal mutations involved in fosfomycin uptake. Antimicrob Agents Chemother 62:e01899-e1917. https://doi.org/10.1128/AAC.01899-17
Neuzillet Y, Naber KG, Schito G, Gualco L, Botto H (2012) French results of the ARESC study: clinical aspects and epidemiology of antimicrobial resistance in female patients with cystitis. Implications for empiric therapy. Me´d Mal Infect 42:66–75
Nigiz Ş, Hazırolan G, Köseoglu Eser Ö, Gür D (2022) First detection of Klebsiella pneumoniae isolate Co-harboring fosfomycin resistance gene fosA3 and bla ctx-m among gram negative urine isolates in a Turkish hospital. Microb Drug Resist 28(3):317–321. https://doi.org/10.1089/mdr.2021.0114
Article CAS PubMed Google Scholar
Oliveira PH, Prather KJ, Prazeres DM, Monteiro GA (2009) Structural instability of plasmid biopharmaceuticals: challenges and implications. Trends Biotechnol 27(9):503–511. https://doi.org/10.1016/j.tibtech.2009.06.004
Article CAS PubMed Google Scholar
Patwardhan V, Kumar D, Goel V, Singh S (2017) Changing prevalence and antibiotic drug resistance pattern of pathogens seen in community-acquired pediatric urinary tract infections at a tertiary care hospital of North India. J Lab Physicians 9(4):264–268. https://doi.org/10.4103/JLP.JLP_149_16
Article CAS PubMed PubMed Central Google Scholar
Queipo-Ortuño Ml, Colmenero JDD, Macias M, Bravo MJ, Morata P (2008) Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. Clin Vaccine Immunol 15(2):293–296. https://doi.org/10.1128/CVI.00270-07
Article CAS PubMed Google Scholar
Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, Mevius DJ, Hordijk J (2018) Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 73(5):1121–1137. https://doi.org/10.1093/jac/dkx488
Comments (0)