Abu El-Ghiet UM, Moustafa SA, Ayashi MM, El-Sakhawy MA, Ateya AE, Waggiallah HA (2023) Characterization of Bacillus thuringiensis isolated from soils in the Jazan region of Saudi Arabia, and their efficacy against Spodoptera littoralis and Aedes aegypti larvae. Saudi J Biol Sci 30(8):103721. https://doi.org/10.1016/j.sjbs.2023.103721
Article CAS PubMed PubMed Central Google Scholar
Antil S, Kumar R, Patha DV et al (2022) Potential of Bacillus altitudinis KMS-6 as a biocontrol agent of Meloidogyne javanica. J Pest Sci 95:1443–1452. https://doi.org/10.1007/s10340-021-01469-x
Bel Y, Galeano M, Banos-Salmeron M, Escriche B (2022) The use of Bacillus thuringiensis to control plant-parasitic nematodes. J Plant Sci Phytopathol 6:062–064. https://doi.org/10.29328/journal.jpsp.1001076
Bel Y, Andres-Anton M, Escriche B (2023) Abundance, distribution, and expression of nematicidal crystal protein genes in Bacillus thuringiensis strains from diverse habitats. Int Microbiol 26(2):295–308. https://doi.org/10.1007/s10123-022-00307-z
Article CAS PubMed Google Scholar
Chalivendra S (2021) Microbial toxins in insect and nematode pest biocontrol. Int J Mol Sci 22(14):7657. https://doi.org/10.3390/ijms22147657
Article CAS PubMed PubMed Central Google Scholar
Haris M, Hussain T, Khan A et al (2024) Optimization and utilization of emerging waste (fly ash) for growth performance of chickpea (Cicer arietinum L.) plant and mitigation of root-knot nematode (Meloidogyne incognita) stress. Environ Sci Pollut Res 31:50225–50242. https://doi.org/10.1007/s11356-024-34498-x
Hassan AA, Youssef MA, Elashtokhy MMA et al (2021) Isolation and identification of Bacillus thuringiensis strains native of the Eastern Province of Saudi Arabia. Egypt J Biol Pest Control 31:6. https://doi.org/10.1186/s41938-020-00352-8
Jain D, Kachhwaha S, Jain R, Kothari S (2012) PCR based detection of cry genes in indigenous strains of Bacillus thuringiensis isolated from the soils of Rajasthan. Indian J Biotechnol 11:491–494. https://nopr.niscpr.res.in/bitstream/123456789/15692/1/IJBT%2011(4)%20491-494.pdf
Jain D, Kachhwaha S, Jain R, Srivastava G, Kothari SL (2010) Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of Bacillus thuringiensis. Indian J Exp Biol 48(11):1152–1156
Jain D, Saharan V, Pareek S (2016) Current status of Bacillus thuringiensis: insecticidal crystal proteins and transgenic crops. In: Al-Khayri J, Jain S, Johnson D (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Cham. https://doi.org/10.1007/978-3-319-22518-0_18
Jain D, Sharma J, Kaur G, Bhojiya AA, Chauhan S, Sharma V, Maharjan E (2021) Phenetic and molecular diversity of nitrogen fixating plant growth promoting Azotobacter isolated from semiarid regions of India. Biomed Res Int 2021:1–9. https://doi.org/10.1155/2021/6686283
Jain D, Sunda SD, Sanadhya S, Nath DJ, Khandelwal SK (2017) Molecular characterization and PCR-based screening of cry genes from Bacillus thuringiensis strains. 3 Biotech 7(1):4. https://doi.org/10.1007/s13205-016-0583-7
Jain D, Udayasuriyan V, Arulselvi PI et al (2006) Cloning, characterization, and expression of a new cry2Ab gene from Bacillus thuringiensis strain 14–1. Appl Biochem Biotechnol 128:185–194. https://doi.org/10.1385/ABAB:128:3:185
Article CAS PubMed Google Scholar
Jouzani GS, Valijanian E, Sharafi R (2017) Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol 101(7):2691–2711. https://doi.org/10.1007/s00253-017-8175-y
Article CAS PubMed Google Scholar
Kahn TW, Duck NB, McCarville MT et al (2021) A Bacillus thuringiensis Cry protein controls soybean cyst nematode in transgenic soybean plants. Nat Commun 12(1):3380. https://doi.org/10.1038/s41467-021-23743-3
Article CAS PubMed PubMed Central Google Scholar
Kalman S, Kiehne KL, Libs JL, Yamamoto T (1993) Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl Environ Microbiol 59(4):1131–1137. https://doi.org/10.1128/aem.59.4.1131-1137.1993
Kantor C, Eisenback JD, Kantor M (2024) Biosecurity risks to human food supply associated with plant-parasitic nematodes. Front Plant Sci 15:1404335. https://doi.org/10.3389/fpls.2024.1404335
Article PubMed PubMed Central Google Scholar
Karim AA, Idris AB, Yilmaz S (2023) Bacillus thuringiensis pesticidal toxins: a global analysis based on a scientometric study (1980–2021). Heliyon 9(8):e18730. https://doi.org/10.1016/j.heliyon.2023.e18730
Article PubMed PubMed Central Google Scholar
Kim JH, Lee BM, Kang MK, Park DJ, Choi IS, Park HY, Lim CH, Son KH (2023) Assessment of nematicidal and plant growth-promoting effects of Burkholderia sp. JB-2 in root-knot nematode-infested soil. Front Plant Sci 14:1216031. https://doi.org/10.3389/fpls.2023.121603
Article PubMed PubMed Central Google Scholar
Kumar V, Khan MR, Walia RK (2020) Crop loss estimations due to plant-parasitic nematodes in major crops in India. Natl Acad Sci Lett 43:409–412. https://doi.org/10.1007/s40009-020-00895-2
Lenin K, Mariam MA, Udayasuriyan V (2001) Expression of a cry2Aa gene in an acrystalliferous Bacillus thuringiensis strain and toxicity of Cry2Aa against Helicoverpa armigera. World J Microbiol Biotechnol 17:273–278. https://doi.org/10.1023/A:1016674417728
Liang Z, Ali Q, Wang Y et al (2022) Toxicity of Bacillus thuringiensis strains derived from the novel crystal protein Cry31Aa with high nematicidal activity against rice parasitic nematode Aphelenchoides besseyi. Int J Mol Sci 23(15):8189. https://doi.org/10.3390/ijms23158189
Article CAS PubMed PubMed Central Google Scholar
Montiel-Rozas MDM, Hurtado-Navarro M, Díez-Rojo MÁ, Pascual JA, Ros M (2019) Sustainable alternatives to 1,3-dichloropropene for controlling root-knot nematodes and fungal pathogens in melon crops in Mediterranean soils: efficacy and effects on soil quality. Environ Pollut 247:1046–1054. https://doi.org/10.1016/j.envpol.2019.01.042
Article CAS PubMed Google Scholar
Mohammed SH, Anwer M, Saedy E et al (2008) Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita. J Cell Mol Biol 7:57–66
Perry RN, Moens M, Starr JL (eds) (2009) Root-knot nematodes. CABI. https://www.cabidigitallibrary.org/doi/book/10.1079/9781845934927.0000
Porcar M, Juárez-Pérez V (2023) PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol Rev 26(5):419–432. https://doi.org/10.1111/j.1574-6976.2003.tb00624.x
Ragasruthi M, Balakrishnan N, Murugan M, Swarnakumari S, Harish S, Sharmila JS (2024) Bacillus thuringiensis (Bt)-based biopesticide: navigating success, challenges, and future horizons in sustainable pest control. Sci Total Environ 954:176594. https://doi.org/10.1016/j.scitotenv.2024.176594
Article CAS PubMed Google Scholar
Ramalakshmi A, Sharmila R, Iniyakumar M et al (2020) Nematicidal activity of native Bacillus thuringiensis against the root knot nematode, Meloidogyne incognita (Kofoid and White). Egypt J Biol Pest Control 30:90. https://doi.org/10.1186/s41938-020-00293-2
Ravari SB, Moghaddam EM (2015) Efficacy of Bacillus thuringiensis Cry14 toxin against root knot nematode, Meloidogyne javanica. Plant Protect Sci 51(1):46–51. https://doi.org/10.17221/93/2013-PPS
Rusinque L, Camacho MJ, Serra C, Nobrega F, Inacio ML (2023) Root-knot nematode assessment: species identification, distribution, and new host records in Portugal. Front Plant Sci 14:1230968. https://doi.org/10.3389/fpls.2023.1230968
Article PubMed PubMed Central Google Scholar
Santos J, Silva A, Queiroz P, Eckstein A, Monnerat R (2022) Selection of Bacillus thuringiensis strains toxic to Meloidogyne incognita. Pesq Agropec Trop 52:e73070. https://doi.org/10.1590/1983-40632022v5273070
Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703. https://doi.org/10.1128/jb.173.2.697-703.1991
Comments (0)