Evaluation of native strains possessing nematicidal specific genes against

Abu El-Ghiet UM, Moustafa SA, Ayashi MM, El-Sakhawy MA, Ateya AE, Waggiallah HA (2023) Characterization of Bacillus thuringiensis isolated from soils in the Jazan region of Saudi Arabia, and their efficacy against Spodoptera littoralis and Aedes aegypti larvae. Saudi J Biol Sci 30(8):103721. https://doi.org/10.1016/j.sjbs.2023.103721

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antil S, Kumar R, Patha DV et al (2022) Potential of Bacillus altitudinis KMS-6 as a biocontrol agent of Meloidogyne javanica. J Pest Sci 95:1443–1452. https://doi.org/10.1007/s10340-021-01469-x

Article  CAS  Google Scholar 

Bel Y, Galeano M, Banos-Salmeron M, Escriche B (2022) The use of Bacillus thuringiensis to control plant-parasitic nematodes. J Plant Sci Phytopathol 6:062–064. https://doi.org/10.29328/journal.jpsp.1001076

Article  Google Scholar 

Bel Y, Andres-Anton M, Escriche B (2023) Abundance, distribution, and expression of nematicidal crystal protein genes in Bacillus thuringiensis strains from diverse habitats. Int Microbiol 26(2):295–308. https://doi.org/10.1007/s10123-022-00307-z

Article  CAS  PubMed  Google Scholar 

Chalivendra S (2021) Microbial toxins in insect and nematode pest biocontrol. Int J Mol Sci 22(14):7657. https://doi.org/10.3390/ijms22147657

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haris M, Hussain T, Khan A et al (2024) Optimization and utilization of emerging waste (fly ash) for growth performance of chickpea (Cicer arietinum L.) plant and mitigation of root-knot nematode (Meloidogyne incognita) stress. Environ Sci Pollut Res 31:50225–50242. https://doi.org/10.1007/s11356-024-34498-x

Article  CAS  Google Scholar 

Hassan AA, Youssef MA, Elashtokhy MMA et al (2021) Isolation and identification of Bacillus thuringiensis strains native of the Eastern Province of Saudi Arabia. Egypt J Biol Pest Control 31:6. https://doi.org/10.1186/s41938-020-00352-8

Article  Google Scholar 

Jain D, Kachhwaha S, Jain R, Kothari S (2012) PCR based detection of cry genes in indigenous strains of Bacillus thuringiensis isolated from the soils of Rajasthan. Indian J Biotechnol 11:491–494. https://nopr.niscpr.res.in/bitstream/123456789/15692/1/IJBT%2011(4)%20491-494.pdf

Jain D, Kachhwaha S, Jain R, Srivastava G, Kothari SL (2010) Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of Bacillus thuringiensis. Indian J Exp Biol 48(11):1152–1156

CAS  PubMed  Google Scholar 

Jain D, Saharan V, Pareek S (2016) Current status of Bacillus thuringiensis: insecticidal crystal proteins and transgenic crops. In: Al-Khayri J, Jain S, Johnson D (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Cham. https://doi.org/10.1007/978-3-319-22518-0_18

Jain D, Sharma J, Kaur G, Bhojiya AA, Chauhan S, Sharma V, Maharjan E (2021) Phenetic and molecular diversity of nitrogen fixating plant growth promoting Azotobacter isolated from semiarid regions of India. Biomed Res Int 2021:1–9. https://doi.org/10.1155/2021/6686283

Article  CAS  Google Scholar 

Jain D, Sunda SD, Sanadhya S, Nath DJ, Khandelwal SK (2017) Molecular characterization and PCR-based screening of cry genes from Bacillus thuringiensis strains. 3 Biotech 7(1):4. https://doi.org/10.1007/s13205-016-0583-7

Jain D, Udayasuriyan V, Arulselvi PI et al (2006) Cloning, characterization, and expression of a new cry2Ab gene from Bacillus thuringiensis strain 14–1. Appl Biochem Biotechnol 128:185–194. https://doi.org/10.1385/ABAB:128:3:185

Article  CAS  PubMed  Google Scholar 

Jouzani GS, Valijanian E, Sharafi R (2017) Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol 101(7):2691–2711. https://doi.org/10.1007/s00253-017-8175-y

Article  CAS  PubMed  Google Scholar 

Kahn TW, Duck NB, McCarville MT et al (2021) A Bacillus thuringiensis Cry protein controls soybean cyst nematode in transgenic soybean plants. Nat Commun 12(1):3380. https://doi.org/10.1038/s41467-021-23743-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalman S, Kiehne KL, Libs JL, Yamamoto T (1993) Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl Environ Microbiol 59(4):1131–1137. https://doi.org/10.1128/aem.59.4.1131-1137.1993

Kantor C, Eisenback JD, Kantor M (2024) Biosecurity risks to human food supply associated with plant-parasitic nematodes. Front Plant Sci 15:1404335. https://doi.org/10.3389/fpls.2024.1404335

Article  PubMed  PubMed Central  Google Scholar 

Karim AA, Idris AB, Yilmaz S (2023) Bacillus thuringiensis pesticidal toxins: a global analysis based on a scientometric study (1980–2021). Heliyon 9(8):e18730. https://doi.org/10.1016/j.heliyon.2023.e18730

Article  PubMed  PubMed Central  Google Scholar 

Kim JH, Lee BM, Kang MK, Park DJ, Choi IS, Park HY, Lim CH, Son KH (2023) Assessment of nematicidal and plant growth-promoting effects of Burkholderia sp. JB-2 in root-knot nematode-infested soil. Front Plant Sci 14:1216031. https://doi.org/10.3389/fpls.2023.121603

Article  PubMed  PubMed Central  Google Scholar 

Kumar V, Khan MR, Walia RK (2020) Crop loss estimations due to plant-parasitic nematodes in major crops in India. Natl Acad Sci Lett 43:409–412. https://doi.org/10.1007/s40009-020-00895-2

Article  Google Scholar 

Lenin K, Mariam MA, Udayasuriyan V (2001) Expression of a cry2Aa gene in an acrystalliferous Bacillus thuringiensis strain and toxicity of Cry2Aa against Helicoverpa armigera. World J Microbiol Biotechnol 17:273–278. https://doi.org/10.1023/A:1016674417728

Article  CAS  Google Scholar 

Liang Z, Ali Q, Wang Y et al (2022) Toxicity of Bacillus thuringiensis strains derived from the novel crystal protein Cry31Aa with high nematicidal activity against rice parasitic nematode Aphelenchoides besseyi. Int J Mol Sci 23(15):8189. https://doi.org/10.3390/ijms23158189

Article  CAS  PubMed  PubMed Central  Google Scholar 

Montiel-Rozas MDM, Hurtado-Navarro M, Díez-Rojo MÁ, Pascual JA, Ros M (2019) Sustainable alternatives to 1,3-dichloropropene for controlling root-knot nematodes and fungal pathogens in melon crops in Mediterranean soils: efficacy and effects on soil quality. Environ Pollut 247:1046–1054. https://doi.org/10.1016/j.envpol.2019.01.042

Article  CAS  PubMed  Google Scholar 

Mohammed SH, Anwer M, Saedy E et al (2008) Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita. J Cell Mol Biol 7:57–66

Google Scholar 

Perry RN, Moens M, Starr JL (eds) (2009) Root-knot nematodes. CABI. https://www.cabidigitallibrary.org/doi/book/10.1079/9781845934927.0000

Porcar M, Juárez-Pérez V (2023) PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol Rev 26(5):419–432. https://doi.org/10.1111/j.1574-6976.2003.tb00624.x

Article  Google Scholar 

Ragasruthi M, Balakrishnan N, Murugan M, Swarnakumari S, Harish S, Sharmila JS (2024) Bacillus thuringiensis (Bt)-based biopesticide: navigating success, challenges, and future horizons in sustainable pest control. Sci Total Environ 954:176594. https://doi.org/10.1016/j.scitotenv.2024.176594

Article  CAS  PubMed  Google Scholar 

Ramalakshmi A, Sharmila R, Iniyakumar M et al (2020) Nematicidal activity of native Bacillus thuringiensis against the root knot nematode, Meloidogyne incognita (Kofoid and White). Egypt J Biol Pest Control 30:90. https://doi.org/10.1186/s41938-020-00293-2

Article  Google Scholar 

Ravari SB, Moghaddam EM (2015) Efficacy of Bacillus thuringiensis Cry14 toxin against root knot nematode, Meloidogyne javanica. Plant Protect Sci 51(1):46–51. https://doi.org/10.17221/93/2013-PPS

Article  Google Scholar 

Rusinque L, Camacho MJ, Serra C, Nobrega F, Inacio ML (2023) Root-knot nematode assessment: species identification, distribution, and new host records in Portugal. Front Plant Sci 14:1230968. https://doi.org/10.3389/fpls.2023.1230968

Article  PubMed  PubMed Central  Google Scholar 

Santos J, Silva A, Queiroz P, Eckstein A, Monnerat R (2022) Selection of Bacillus thuringiensis strains toxic to Meloidogyne incognita. Pesq Agropec Trop 52:e73070. https://doi.org/10.1590/1983-40632022v5273070

Article  Google Scholar 

Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif