Biological activities of citrus fruit-derived copper oxide nanoparticles: towards sustainable antimicrobial and antioxidant solutions

Adejoke OE, Paulinus NS, Omonigho IH (2020) Chemical and phytochemical analyses of extracts from the leaves of Acalypha wilkesiana, “an herbal plant used for the treatment of various skin disorders.” Annals of Science and Technology 5:40–48. https://doi.org/10.2478/ast-2020-0012

Article  Google Scholar 

Ademosun AO, Oboh G, Passamonti S et al (2016) Phenolic composition of orange peels and modulation of redox status and matrix metalloproteinase activities in primary (Caco-2) and metastatic (LoVo and LoVo/ADR) colon cancer cells. Eur Food Res Technol 242:1949–1959. https://doi.org/10.1007/s00217-016-2694-0

Article  CAS  Google Scholar 

Ahamed M, Alhadlaq HA, Khan MAM et al (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater 2014:1–4. https://doi.org/10.1155/2014/637858

Article  CAS  Google Scholar 

Akintelu SA, Folorunso AS, Folorunso FA, Oyebamiji AK (2020) Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 6:e04508. https://doi.org/10.1016/j.heliyon.2020.e04508

Article  PubMed  PubMed Central  Google Scholar 

Albukhaty S, Al-Bayati L, Al-Karagoly H, Al-Musawi S (2022) Preparation and characterization of titanium dioxide nanoparticles and in vitro investigation of their cytotoxicity and antibacterial activity against Staphylococcus aureus and Escherichia coli. Anim Biotechnol 33:864–870. https://doi.org/10.1080/10495398.2020.1842751

Article  CAS  PubMed  Google Scholar 

Al-Thani AN, Jan AG, Abbas M et al (2024) Nanoparticles in cancer theragnostic and drug delivery: a comprehensive review. Life Sci 352:122899. https://doi.org/10.1016/j.lfs.2024.122899

Article  CAS  PubMed  Google Scholar 

Amer MW, Awwad AM (2021) Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. International Scientific Organization 7:1–8

CAS  Google Scholar 

Amin F, Fozia KB et al (2021) Green synthesis of copper oxide nanoparticles using Aerva javanica leaf extract and their characterization and investigation of in vitro antimicrobial potential and cytotoxic activities. Evidence-Based Complementary and Alternative Medicine 2021:1–12. https://doi.org/10.1155/2021/5589703

Article  Google Scholar 

Anandalakshmi K, Venugobal J, Ramasamy V (2016) Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci 6:399–408. https://doi.org/10.1007/s13204-015-0449-z

Article  CAS  Google Scholar 

Ayoola GA, Coker HAB, Adesegun SA et al (2008) Method spots test. Trop J Pharm Res 7:1019–1024

Google Scholar 

Chakraborty N, Banerjee J, Chakraborty P et al (2022) Green synthesis of copper/copper oxide nanoparticles and their applications: a review. Green Chem Lett Rev 15:185–213

Article  Google Scholar 

Chang Y-N, Zhang M, Xia L et al (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5:2850–2871. https://doi.org/10.3390/ma5122850

Article  CAS  PubMed Central  Google Scholar 

Chauhan A, Kumari S, Verma R et al (2022) Fabrication of copper oxide nanoparticles via microwave and green approaches and their antimicrobial potential. Chem Pap 76:7147–7162. https://doi.org/10.1007/s11696-022-02407-6

Article  CAS  Google Scholar 

Chompunut L, Wanaporn T, Anupong W et al (2022) Synthesis of copper nanoparticles from the aqueous extract of Cynodon dactylon and evaluation of its antimicrobial and photocatalytic properties. Food Chem Toxicol 166:113245. https://doi.org/10.1016/j.fct.2022.113245

Article  CAS  PubMed  Google Scholar 

Devi A, Krishan B (2019) Comparative analysis of antioxidant and antimicrobial properties of Thuja occidentalis and Phyllanthus emblica. Plant Cell Biotechnol Mol Biol 21:1–15

Google Scholar 

Dikshit P, Kumar J, Das A et al (2021) Green synthesis of metallic nanoparticles: applications and limitations. Catalysts 11:902. https://doi.org/10.3390/catal11080902

Article  CAS  Google Scholar 

Djamila B, Eddine LS, Abderrhmane B et al (2024) In vitro antioxidant activities of copper mixed oxide (CuO/Cu2O) nanoparticles produced from the leaves of Phoenix dactylifera L. Biomass Convers Biorefin 14:6567–6580. https://doi.org/10.1007/s13399-022-02743-3

Article  CAS  Google Scholar 

Dou X, Fan N, Yang J et al (2024) Research progress on chitosan and its derivatives in the fields of corrosion inhibition and antimicrobial activity. Environ Sci Pollut Res 31:30353–30369. https://doi.org/10.1007/s11356-024-33351-5

Article  CAS  Google Scholar 

Dugal S, Mascarenhas S (2015) Chemical synthesis of copper nanoparticles and its antibacterial effect against gram negative pathogens. J Adv Sci Res 6:1–4

CAS  Google Scholar 

Eid AM, Fouda A, Hassan SED, et al (2023) Plant-based copper oxide nanoparticles; biosynthesis, characterization, antibacterial activity, tanning wastewater treatment, and heavy metals sorption. Catalysts 13:. https://doi.org/10.3390/catal13020348

Elango G, Roopan SM (2015) Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 139:367–373. https://doi.org/10.1016/j.saa.2014.12.066

Article  CAS  PubMed  Google Scholar 

Emima Jeronsia J, Allwin Joseph L, Annie Vinosha P et al (2019) Camellia Sinensis leaf extract mediated synthesis of copper oxide nanostructures for potential biomedical applications. Mater Today Proc 8:214–222. https://doi.org/10.1016/j.matpr.2019.02.103

Article  CAS  Google Scholar 

Essa WK (2024) Methylene blue removal by copper oxide nanoparticles obtained from green synthesis of Melia azedarach: kinetic and isotherm studies. Chemistry (Switzerland) 6:249–263. https://doi.org/10.3390/chemistry6010012

Article  CAS  Google Scholar 

Flores-Rábago KM, Rivera-Mendoza D, Vilchis-Nestor AR, et al (2023) Antibacterial activity of biosynthesized copper oxide nanoparticles (CuONPs) Using Ganoderma sessile. Antibiotics 12. https://doi.org/10.3390/antibiotics12081251

Ghaffar A, Kiran S, Rafique MA et al (2021) Citrus paradisi fruit peel extract mediated green synthesis of copper nanoparticles for remediation of Disperse Yellow 125 dye. Desalination Water Treat 212:368–375. https://doi.org/10.5004/dwt.2021.26684

Article  CAS  Google Scholar 

Gulcin İ, Alwasel SH (2022) Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes 10:132. https://doi.org/10.3390/pr10010132

Article  CAS  Google Scholar 

Ijaz F, Shahid S, Khan SA et al (2017) Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: antimicrobial, antioxidant and photocatalytic dye degradation activitie. Trop J Pharm Res 16:743. https://doi.org/10.4314/tjpr.v16i4.2

Article  CAS  Google Scholar 

Iqbal J, Andleeb A, Ashraf H et al (2022) Potential antimicrobial, antidiabetic, catalytic, antioxidant and ROS/RNS inhibitory activities of Silybum marianum mediated biosynthesized copper oxide nanoparticles. RSC Adv 12:14069–14083. https://doi.org/10.1039/d2ra01929a

Article  CAS  PubMed  PubMed Central  Google Scholar 

Islam M, Islam M, Fakhruzzaman M (2014) Isolation and identification of Escherichia coli and Salmonella from poultry litter and feed. International Journal of Natural and Social Sciences 1:1–7

Google Scholar 

Jadhav S, Gaikwad S, Nimse M, Rajbhoj A (2011) Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. J Clust Sci 22:121–129. https://doi.org/10.1007/s10876-011-0349-7

Article  CAS  Google Scholar 

Jahan I, Erci F, Isildak I (2021) Facile microwave-mediated green synthesis of non-toxic copper nanoparticles using Citrus sinensis aqueous fruit extract and their antibacterial potentials. J Drug Deliv Sci Technol 61:102172. https://doi.org/10.1016/j.jddst.2020.102172

Article  CAS  Google Scholar 

Jayandran M, Haneefa MM, Balasubramanian V (2016) Green synthesis, characterization and antimicrobial activity studies of Curcumin aniline biofunctionalized copper oxide nanoparticles. Indian J Sci Technol 9:1–9. https://doi.org/10.17485/ijst/2016/v9i3/80523

Kayani ZN, Umer M, Riaz S, Naseem S (2015) Characterization of copper oxide nanoparticles fabricated by the Sol-Gel method. J Electron Mater 44:3704–3709. https://doi.org/10.1007/s11664-015-3867-5

Article  CAS  Google Scholar 

Kefford JF (1960) The chemical constituents of citrus fruits. In: Chichester CO, Mrak EM, Stewart GFBT-A in FR (eds). Academic Press, pp 285–372. https://doi.org/10.1016/S0065-2628(08)60278-5

Khan A, Arif K, Munir B, et al (2018) Estimating total phenolics in Taraxacum officinale (L.) extracts. Pol J Environ Stud 28:497–501. https://doi.org/10.15244/pjoes/78435

Khan H, Yerramilli AS, D’Oliveira A et al (2020) Experimental methods in chemical engineering: X-ray diffraction spectroscopy—XRD. Can J Chem Eng 98:1255–1266. https://doi.org/10.1002/cjce.23747

Article  CAS  Google Scholar 

Khoshnevisan K, Maleki H, Honarvarfard E et al (2019) Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review. Microchim Acta 186:49. https://doi.org/10.1007/s00604-018-3069-y

Article  CAS  Google Scholar 

Kiarashi M, Mahamed P, Ghotbi N et al (2024) Spotlight on therapeutic efficiency of green synthesis metals and their oxide nanoparticles in periodontitis. J Nanobiotechnology 22:21. https://doi.org/10.1186/s12

Comments (0)

No login
gif