Agmon N, Mitchell LA, Cai Y, Ikushima S, Chuang J, Zheng A, Choi WJ, Martin JA, Caravelli K, Stracquadanio G, Boeke JD (2015) Yeast Golden Gate (yGG) for the efficient assembly of S. cerevisiae transcription units. ACS Synth Biol 4:853–859. https://doi.org/10.1021/sb500372z
Article CAS PubMed Google Scholar
Antošová Z, Sychrová H (2016) Yeast hosts for the production of recombinant laccases: a review. Mol Biotechnol 58:93–116. https://doi.org/10.1007/s12033-015-9910-1
Article CAS PubMed Google Scholar
Ata O, Ergun BG, Fickers P, Heistinger L, Mattanovich D, Rebnegger C, Gasser B (2021) What makes Komagataella phaffii non-conventional? FEMS Yeast Res 21:1–15. https://doi.org/10.1093/femsyr/foab059
Bazon ML, Perez-Riverol A, Dos Santos-Pinto JRA, Fernandes LGR, Lasa AM, Justo-Jacomini DL, Palma MS, Zollner RL, Brochetto-Braga MR (2017) Heterologous expression, purification and immunoreactivity of the antigen 5 from Polybia paulista wasp venom. Toxins (Basel) 9:1–14. https://doi.org/10.3390/toxins9090259
Benchling (2021) Benchling [Biology Software]. https://benchling.com. Accessed 12 Jan 2025
Bertrand B, Martínez-Morales F, Trejo-Hernández MR (2017) Upgrading laccase production and biochemical properties: strategies and challenges. Biotechnol Prog 33:1015–1034. https://doi.org/10.1002/btpr.2482
Article CAS PubMed Google Scholar
Bonugli-Santos RC, Vieira GAL, Collins C, Fernandes TCC, Marin-Morales MA, Murray P, Sette LD (2016) Enhanced textile dye decolorization by marine-derived basidiomycete Peniophora sp. CBMAI 1063 using integrated statistical design. Environ Sci Pollut Res 23:8659–8668. https://doi.org/10.1007/s11356-016-6053-2
Brenelli LB, Persinoti GF, Cairo JPLF, Liberato MV, Gonçalves TA, Otero IVR, Mainardi PH, Felby C, Sette LD, Squina FM (2019) Novel redox-active enzymes for ligninolytic applications revealed from multiomics analyses of Peniophora sp. CBMAI 1063, a laccase hyper-producer strain. Sci Rep 9:1–15. https://doi.org/10.1038/s41598-019-53608-1
Bronikowski A, Hagedoorn PL, Koschorreck K, Urlacher VB (2017) Expression of a new laccase from Moniliophthora roreri at high levels in Pichia pastoris and its potential application in micropollutant degradation. AMB Express 7:1–13. https://doi.org/10.1186/s13568-017-0368-3
Bustos C, Quezada J, Veas R, Altamirano C, Braun-Galleani S, Fickers P, Berrios J (2022) Advances in cell engineering of the Komagataella phaffii platform for recombinant protein production. Metabolites 12:1–20. https://doi.org/10.3390/metabo12040346
Çalik P, Ata Ö, Güneş H, Massahi A, Boy E, Keskin A, Öztürk S, Zerze GH, Özdamar TH (2015) Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: from carbon source metabolism to bioreactor operation parameters. Biochem Eng J 95:20–36. https://doi.org/10.1016/j.bej.2014.12.003
Carson M, Johnson DH, McDonald H, Brouillette C, DeLucas LJ (2007) His-tag impact on structure. Acta Crystallogr D Biol Crystallogr 63:295–301. https://doi.org/10.1107/S0907444906052024
Article CAS PubMed Google Scholar
Chuang J, Boeke JD, Mitchell LA (2018) Coupling yeast Golden Gate and VEGAS for efficient assembly of the violacein pathway in Saccharomyces cerevisiae. In: Jensen MK, Keasling JD (eds) Synthetic metabolic pathways: Methods and protocols. Springer, New York, pp 211–225
Debnath R, Saha T (2020) An insight into the production strategies and applications of the ligninolytic enzyme laccase from bacteria and fungi. Biocatal Agric Biotechnol 26:101645. https://doi.org/10.1016/j.bcab.2020.101645
Ensani M, Mojerlou S, Zamani SM (2023) Enhanced laccase activity in Trametes versicolor (L.: Fr.) Pilát by host substrate and copper. Braz J Microbiol 54:1565–1572. https://doi.org/10.1007/s42770-023-01096-x
Article CAS PubMed PubMed Central Google Scholar
Geisel N (2011) Constitutive versus responsive gene expression strategies for growth in changing environments. PLoS ONE 6:23–25. https://doi.org/10.1371/journal.pone.0027033
Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385. https://doi.org/10.1007/s00018-009-0169-1
Article CAS PubMed Google Scholar
Gomaa OM, Momtaz OA (2015) Copper induction and differential expression of laccase in Aspergillus flavus. Braz J Microbiol 46:285–292. https://doi.org/10.1590/S1517-838246120120118
Article CAS PubMed PubMed Central Google Scholar
Hong F, Meinander NQ, Jönsson LJ (2002) Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnol Bioeng 79:438–449. https://doi.org/10.1002/bit.10297
Article CAS PubMed Google Scholar
Jahic M, Gustavsson M, Jansen AK, Martinelle M, Enfors SO (2003) Analysis and control of proteolysis of a fusion protein in Pichia pastoris fed-batch processes. J Biotechnol 102:45–53. https://doi.org/10.1016/S0168-1656(03)00003-8
Article CAS PubMed Google Scholar
Jahic M, Veide A, Charoenrat T, Teeri T, Enfors SO (2006) Process technology for production and recovery of heterologous proteins with Pichia pastoris. Biotechnol Prog 22:1465–1473. https://doi.org/10.1021/bp060171t
Article CAS PubMed Google Scholar
Liu SH, Tsai SL, Guo PY, Lin CW (2020) Inducing laccase activity in white rot fungi using copper ions and improving the efficiency of azo dye treatment with electricity generation using microbial fuel cells. Chemosphere 243:125304. https://doi.org/10.1016/j.chemosphere.2019.125304
Article CAS PubMed Google Scholar
Loi M, Glazunova O, Fedorova T, Logrieco AF, Mulè G (2021) Fungal laccases: the forefront of enzymes for sustainability. J Fungi 7:1–25. https://doi.org/10.3390/jof7121048
Lõoke M, Kristjuhan K, Kristjuhan A (2011) Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50:325–328. https://doi.org/10.2144/000113672
Article CAS PubMed PubMed Central Google Scholar
Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K (2015) Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv 33:1177–1193. https://doi.org/10.1016/j.biotechadv.2015.05.008
Article CAS PubMed Google Scholar
Majorek KA, Kuhn ML, Chruszcz M, Anderson WF, Minor W (2014) Double trouble - Buffer selection and his-tag presence may be responsible for non reproducibility of biomedical experiments. Protein Sci 23:1359–1368. https://doi.org/10.1002/pro.2520
Article CAS PubMed PubMed Central Google Scholar
Massahi A, Çalik P (2015) In-silico determination of Pichia pastoris signal peptides for extracellular recombinant protein production. J Theor Biol 364:179–188. https://doi.org/10.1016/j.jtbi.2014.08.048
Article CAS PubMed Google Scholar
Menezes CBA, Bonugli-Santos RC, Miqueletto PB, Passarini MRZ, Silva CHD, Justo MR, Leal RR, Fantinatti-Garboggini F, Oliveira VM, Berlinck RGS, Sette LD (2010) Microbial diversity associated with algae, ascidians and sponges from the north coast of São Paulo state, Brazil. Microbiol Res 165:466–482. https://doi.org/10.1016/j.micres.2009.09.005
Meng L, Liu Y, Yin X, Zhou H, Wu J, Wu M, Yang L (2020) Effects of his-tag on catalytic activity and enantioselectivity of recombinant transaminases. Appl Biochem Biotechnol 190:880–895. https://doi.org/10.1007/s12010-019-03117-8
Article CAS PubMed Google Scholar
Obst U, Lu TK, Sieber V (2017) A modular toolkit for generating Pichia pastoris secretion libraries. ACS Synth Biol 6:1016–1025. https://doi.org/10.1021/acssynbio.6b00337
Comments (0)