Abdelaziz MNS, Zayda MG, Maung AT, El-Telbany M, Mohammadi TN, Lwin SZC, Linn KZ, Wang C, Yuan L, Masuda Y, Honjoh K, Miyamoto T (2024) Genetic characterization, antibiotic resistance, and virulence genes profiling of Bacillus cereus strains from various foods in Japan. Antibiotics 13:774. https://doi.org/10.3390/antibiotics13080774
Article CAS PubMed PubMed Central Google Scholar
Adamski P, Byczkowska-Rostkowska Z, Gajewska J, Zakrzewski AJ, Kłębukowska L (2023) Prevalence and antibiotic resistance of Bacillus sp. isolated from raw milk. Microorganisms 11:1065. https://doi.org/10.3390/microorganisms11041065
Article CAS PubMed PubMed Central Google Scholar
Altayar M, Sutherland AD (2006) Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. J Appl Microbiol 100(1):7–14. https://doi.org/10.1111/j.1365-2672.2005.02764.x
Article CAS PubMed Google Scholar
Baghbadorani ST, Rahimi E (2023) Shakerian A (2023) Investigation of virulence and antibiotic-resistance of Bacillus cereus isolated from various spices. Can J Infect Dis Med Microbiol 1:8390778. https://doi.org/10.1155/2023/8390778
Bahaddad SA, Almalki MHK, Alghamdi OA, Sohrab SS, Yasir M, Azhar EI, Chouayekh H (2023) Bacillus species as direct-fed microbial antibiotic alternatives for monogastric production. Probiotics Antimicrob Proteins 15:1–16. https://doi.org/10.1007/s12602-022-09909-5
Bartoszewicz M, Czyżewska U (2021) Comparison of the antibiotic resistance between genetically diverse and toxigenic Bacillus cereus sensu lato from milk, pepper and natural habitats. J Appl Microbiol 130:370–381. https://doi.org/10.1111/jam.14792
Article CAS PubMed Google Scholar
Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P, Frankel G (2010) Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 12(9):2385–2397. https://doi.org/10.1111/j.1462-2920.2010.02297.x
Büyüktuncer Z, Yücecan S (2009) Nutrition and health evaluation of Turkish cuisine. Bes Diy Derg 37(1–2):93–100
Cancilla MR, Powell IB, Hillier AJ, Davidson BE (1992) Rapid genomic fingerprinting of Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Appl Environ Microbiol 58(5):1772–1775. https://doi.org/10.1128/aem.58.5.1772-1775.1992
Article CAS PubMed PubMed Central Google Scholar
Cariolato D, Andrighetto C, Lombardi A (2008) Occurrence of virulence factors and antibiotic resistances in Enterococcus faecalis and Enterococcus faecium collected from dairy and human samples in North Italy. Food Control 19:886–892. https://doi.org/10.1016/j.foodcont.2007.08.019
Castulo-Arcos DA, Adame-Gómez R, Castro-Alarcón N, Galán-Luciano A, Santiago Dionisio MC, Leyva-Vázquez MA, Perez-Olais J-H, Toribio-Jiménez J, Ramirez-Peralta A (2022) Genetic diversity of enterotoxigenic Bacillus cereus strains in coriander in southwestern Mexico. PeerJ 10:e13667. https://doi.org/10.7717/peerj.13667
Article CAS PubMed PubMed Central Google Scholar
Chica J, Correa M, Aceves-Diez A, Rasschaert G, Heyndrickx M, Sandoval-Castañeda L (2020) Genomic and toxigenic heterogeneity of Bacillus cereus sensu lato isolated from ready-to-eat foods and powdered milk in day care centers in Colombia. Foodborne Pathog Dis 17(5):340–347. https://doi.org/10.1089/fpd.2019.2709
Chon JW, Kim JH, Lee SJ, Hyeon JY, Seo KH (2012) Toxin profile, antibiotic resistance, and phenotypic and molecular characterization of Bacillus cereus in Sunsik. Food Microbiol 32:217–222. https://doi.org/10.1016/j.fm.2012.06.003
Article CAS PubMed Google Scholar
Çürek S, Geniş B, Özden Tuncer B, Tuncer Y (2023) Prevalence, toxin genes, and antibiotic resistance profiles of Bacillus cereus isolates from spices in Antalya and Isparta provinces in Türkiye. Indian J Microbiol 63(4):549–561. https://doi.org/10.1007/s12088-023-01111-7
Article CAS PubMed PubMed Central Google Scholar
EUCAST (2022) European Committee on antimicrobial susceptibility testing breakpoint tables for interpretation of MICs and zone diameters. Version 12.0 [online]. Website:https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf. [Accessed April 2022]
FDA (2021) Bacteriological Analytical Manual (BAM) Capter 14, Bacillus cereus. Available at: https://www.fda.gov/food/laboratory-methods-food/bam-bacillus-cereus (Accessed: 14 February 2024)
Fiedler G, Schneider C, Igbinosa E, Kabisch J, Brinks E, Becker B, Stoll D, Cho G, Huch M, Franz CMAP (2019) Antibiotics resistance and toxin profiles of Bacillus cereus- group isolates from fresh vegetables from German retail markets. BMC Microbiol 19:250. https://doi.org/10.1186/s12866-019-1632-2
Article CAS PubMed PubMed Central Google Scholar
Flores-Urbán KA, Natividad-Bonifacio I, Zquez-Quiñones CRVÁ, Vázquez-Salinas C, Quiñones-Ramírez EI (2014) Detection of toxigenic Bacillus cereus strains isolated from vegetables in Mexico City. J Food Prot 77(12):2144–2147. https://doi.org/10.4315/0362-028X.JFP-13-479
Article CAS PubMed Google Scholar
Gao T, Ding Y, Wu Q, Wang J, Zhang J, Yu S, Yu P, Liu C, Kong L, Feng Z, Chen M, Wu S, Zeng H, Wu H (2018) Prevalence, virulence genes, antimicrobial susceptibility, and genetic diversity of Bacillus cereus isolated from pasteurized milk in China. Front Microbiol 9:533. https://doi.org/10.3389/fmicb.2018.00533
Article PubMed PubMed Central Google Scholar
Gdoura-Ben Amor M, Siala M, Zayani M, Grosset N, Smaoui S, Messadi-Akrout F, Baron F, Jan S, Gautier M, Gdoura R (2018) Isolation, identification, prevalence, and genetic diversity of Bacillus cereus group bacteria from different foodstuffs in Tunisia. Front Microbiol 9:447. https://doi.org/10.3389/fmicb.2018.00447
Article PubMed PubMed Central Google Scholar
Huang J-S, Peng Y-H, Chung K-R, Huang J-W (2018) Suppressive efficacy of volatile compounds produced by Bacillus mycoides on damping-off pathogens of cabbage seedlings. J Agric Sci 156:795–809. https://doi.org/10.1017/S0021859618000746
Ibrahim AS, Hafız NM, Saad MF (2022) Prevalence of Bacillus cereus in dairy powders focusing on its toxigenic genes and antimicrobial resistance. Arch Microbiol 204:339. https://doi.org/10.1007/s00203-022-02945-3
Article CAS PubMed PubMed Central Google Scholar
Iurlina MO, Saiz AI, Fuselli SR, Fritz R (2006) Prevalence of Bacillus spp. in different food products collected in Argentina. LWT-Food Sci Technol 39:105–110. https://doi.org/10.1016/j.lwt.2005.01.006
Jessberger N, Dietrich R, Schauer K, Schwemmer S, Märtlbauer E, Benz R (2020) Characteristics of the protein complexes and pores formed by Bacillus cereus hemolysin BL. Toxins 12:672. https://doi.org/10.3390/toxins12110672
Article CAS PubMed PubMed Central Google Scholar
Kim JM, Forghani F, Kim JB, Park YB, Park MS, Wang J, Park JH, Oh DH (2012) Improved multiplex PCR assay for simultaneous detection of Bacillus cereus emetic and enterotoxic strains. Food Sci Biotechnol 21(5):1439–1444. https://doi.org/10.1007/s10068-012-0189-8
Kim HJ, Koo M, Hwang D, Choi JH, Kim SM, Oh SW (2016a) Contamination patterns and molecular typing of Bacillus cereus in fresh-cut vegetable salad processing. Appl Biol Chem 59:573–577. https://doi.org/10.1007/s13765-016-0198-z
Kim Y-J, Kim HS, Kim KY, Chon JW, Kim DH, Seo KH (2016b) High occurrence rate and contamination level of Bacillus cereus in organic vegetables on sale in retail markets. Foodborne Pathog Dis 13:656–660. https://doi.org/10.1089/fpd.2016.2163
Article CAS PubMed Google Scholar
Kong L, Yu S, Yuan X, Li C, Yu P, Wang J, Guo H, Wu S, Ye Q, Lei T, Yang X, Zhang Y, Wei X, Zeng H, Zhang J, Wu Q, Ding Y (2021) An investigation on the occurrence and molecular characterization of Bacillus cereus in meat and meat products in China. Foodborne Pathog Dis 18(5):306–314. https://doi.org/10.1089/fpd.2020.2885
Article CAS PubMed Google Scholar
Kowalska J, Maćkiw E, Korsak D, Postupolski J (2024) Prevalence of Bacillus cereus in food products in Poland. Ann Agric Environ Med 31(1):8–12. https://doi.org/10.26444/aaem/168580
Comments (0)