Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760. https://doi.org/10.1038/nature05236
Article CAS PubMed Google Scholar
Blazek ER, Foutch JL, Maki G (2007) Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiation Oncol, Biol, Phys 67:1–5. https://doi.org/10.1016/j.ijrobp.2006.09.037
Cao J, Li J, Sun L, Qin T, Xiao Y, Chen K, Qian W, Duan W, Lei J, Ma J, Ma Q, Han L (2019) Hypoxia-driven paracrine osteopontin/integrin αvβ3 signaling promotes pancreatic cancer cell epithelial-mesenchymal transition and cancer stem cell-like properties by modulating forkhead box protein M1. Mol Oncol 13:228–245. https://doi.org/10.1002/1878-0261.12399
Article CAS PubMed Google Scholar
Cho YM, Kim YS, Kang MJ, Farrar WL, Hurt EM (2012) Long-term recovery of irradiated prostate cancer increases cancer stem cells. The Prostate 72:1746–1756. https://doi.org/10.1002/pros.22527
Article PubMed PubMed Central Google Scholar
de Jong MC, Pramana J, van der Wal JE, Lacko M, Peutz-Kootstra CJ, de Jong JM, Takes RP, Kaanders JH, van der Laan BF, Wachters J, Jansen JC, Rasch CR, van Velthuysen ML, Grénman R, Hoebers FJ, Schuuring E, van den Brekel MW, Begg AC (2010) CD44 expression predicts local recurrence after radiotherapy in larynx cancer. Clin Cancer Res: an Off J Am Assoc Cancer Res 16:5329–5338. https://doi.org/10.1158/1078-0432.Ccr-10-0799
Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783. https://doi.org/10.1038/nature07733
Article CAS PubMed PubMed Central Google Scholar
Ding M, Zhao J, Bowman L, Lu Y, Shi X (2010) Inhibition of AP-1 and MAPK signaling and activation of Nrf2/ARE pathway by quercitrin. Int J Oncol 36:59–67
Elbaz HA, Lee I, Antwih DA, Liu J, Hüttemann M, Zielske SP (2014) Epicatechin stimulates mitochondrial activity and selectively sensitizes cancer cells to radiation. PloS One 9:e88322. https://doi.org/10.1371/journal.pone.0088322
Article CAS PubMed PubMed Central Google Scholar
Glumac PM, LeBeau AM (2018) The role of CD133 in cancer: a concise review. Clin Transl Med 7:1–14
Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, Paz-Ares L (2017) Lung cancer: current therapies and new targeted treatments. Lancet (London, England) 389:299–311.https://doi.org/10.1016/s0140-6736(16)30958-8.
Huang M, Wang J, Zhou H, Lv Z, Li T, Liu M, Lv Y, Wu A, Xia J, Xu H, Chen W, Liu P (2024) (-) - Epicatechin regulates LOC107986454 by targeting the miR-143-3p/EZH2 axis to enhance the radiosensitivity of non-small cell lung cancer. Am J Med Sci. https://doi.org/10.1016/j.amjms.2024.06.02710.1016/j.amjms.2024.06.027
Juan H, Luyuan W, Bin T, Rongrong R, Taoxiong S, Liwei Z, Jiao D, Chenggang L, Yan W, Qingfu C (2022) Integrated transcriptomics and widely targeted metabolomics analyses provide insights into flavonoid biosynthesis in the rhizomes of golden buckwheat (Fagopyrum cymosum)
. Front Plant Sci 13:803472–803472
Kalinina OA, Kalinin SA, Polack EW, Mikaelian I, Panda S, Costa RH, Adami GR (2003) Sustained hepatic expression of FoxM1B in transgenic mice has minimal effects on hepatocellular carcinoma development but increases cell proliferation rates in preneoplastic and early neoplastic lesions. Oncogene 22:6266–6276. https://doi.org/10.1038/sj.onc.1206640
Article CAS PubMed Google Scholar
Kang MS, Ham YM, Oh DJ, Jung YH, Han SI, Kim JH (2021) Lapathoside A isolated from Fagopyrum esculentum induces apoptosis in human pancreatic cancer cells. Anticancer Res 41:747–756. https://doi.org/10.21873/anticanres.14826
Article CAS PubMed Google Scholar
Kim IM, Ackerson T, Ramakrishna S, Tretiakova M, Wang IC, Kalin TV, Major ML, Gusarova GA, Yoder HM, Costa RH, Kalinichenko VV (2006) The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res 66:2153–2161. https://doi.org/10.1158/0008-5472.Can-05-3003
Article CAS PubMed Google Scholar
Koo CY, Muir KW, Lam EW (2012) FOXM1: from cancer initiation to progression and treatment. Biochimica et Biophys Acta 1819:28–37. https://doi.org/10.1016/j.bbagrm.2011.09.004
Krisnawan VE, Stanley JA, Schwarz JK, DeNardo DG (2020) Tumor microenvironment as a regulator of radiation therapy: new insights into stromal-mediated radioresistance. Cancers 12(10):2916. https://doi.org/10.3390/cancers12102916
Article CAS PubMed PubMed Central Google Scholar
Laoukili J, Kooistra MR, Brás A, Kauw J, Kerkhoven RM, Morrison A, Clevers H, Medema RH (2005) FoxM1 is required for execution of the mitotic programme and chromosome stability. Nature Cell Biol 7:126–136. https://doi.org/10.1038/ncb1217
Article CAS PubMed Google Scholar
Lee Y, Kim KH, Kim DG, Cho HJ, Kim Y, Rheey J, Shin K, Seo YJ, Choi YS, Lee JI, Lee J, Joo KM, Nam DH (2015) FoxM1 promotes stemness and radio-resistance of glioblastoma by regulating the master stem cell regulator Sox2. PloS One 10:e0137703. https://doi.org/10.1371/journal.pone.0137703
Article CAS PubMed PubMed Central Google Scholar
Li F, Zhou K, Gao L, Zhang B, Li W, Yan W, Song X, Yu H, Wang S, Yu N, Jiang Q (2016) Radiation induces the generation of cancer stem cells: a novel mechanism for cancer radioresistance. Oncol Lett 12:3059–3065. https://doi.org/10.3892/ol.2016.5124
Article CAS PubMed PubMed Central Google Scholar
Li T, Ma J, Han X, Jia Y, Yuan H, Shui S, Guo D (2018) MicroRNA-320 enhances radiosensitivity of glioma through down-regulation of sirtuin type 1 by directly targeting forkhead box protein M1. Transl Oncol 11:205–212. https://doi.org/10.1016/j.tranon.2017.12.008
Article PubMed PubMed Central Google Scholar
Liao GB, Li XZ, Zeng S, Liu C, Yang SM, Yang L, Hu CJ, Bai JY (2018) Regulation of the master regulator FOXM1 in cancer. Cell CommunSignaling : CCS 16:57. https://doi.org/10.1186/s12964-018-0266-6
Article CAS PubMed PubMed Central Google Scholar
Liu M, Dai B, Kang SH, Ban K, Huang FJ, Lang FF, Aldape KD, Xie TX, Pelloski CE, Xie K, Sawaya R, Huang S (2006) FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res 66:3593–3602. https://doi.org/10.1158/0008-5472.Can-05-2912
Article CAS PubMed Google Scholar
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y (2019) Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 14:48. https://doi.org/10.1186/s13020-019-0270-9
Article CAS PubMed PubMed Central Google Scholar
Ma Q, Liu Y, Shang L, Yu J, Qu Q (2017) The FOXM1/BUB1B signaling pathway is essential for the tumorigenicity and radioresistance of glioblastoma. Oncol Rep 38:3367–3375. https://doi.org/10.3892/or.2017.6032
Article CAS PubMed PubMed Central Google Scholar
Madureira PA, Varshochi R, Constantinidou D, Francis RE, Coombes RC, Yao KM, Lam EW (2006) The Forkhead box M1 protein regulates the transcription of the estrogen receptor alpha in breast cancer cells. J Biol Chem 281:25167–25176. https://doi.org/10.1074/jbc.M603906200
Article CAS PubMed Google Scholar
Moncharmont C, Levy A, Gilormini M, Bertrand G, Chargari C, Alphonse G, Ardail D, Rodriguez-Lafrasse C, Magné N (2012) Targeting a cornerstone of radiation resistance: cancer stem cell. Cancer Lett 322:139–147. https://doi.org/10.1016/j.canlet.2012.03.024
Article CAS PubMed Google Scholar
Nandi D, Cheema PS, Jaiswal N, Nag A (2018) FoxM1: repurposing an oncogene as a biomarker. Seminars Cancer Biol 52:74–84. https://doi.org/10.1016/j.semcancer.2017.08.009
Comments (0)