Ahad MA, Kumaran KR, Ning T, Mansor NI, Effendy MA, Damodaran T, Lingam K, Wahab HA, Nordin N, Liao P, Müller CP, Hassan Z (2020) Insights into the neuropathology of cerebral ischemia and its mechanisms. Rev Neurosci 31(5):521–538. https://doi.org/10.1515/revneuro-2019-0099
Article CAS PubMed Google Scholar
Battista D, Ferrari CC, Gage FH, Pitossi FJ (2006) Neurogenic niche modulation by activated microglia: transforming growth factor β increases neurogenesis in the adult dentate gyrus. Eur J Neurosci 23(1):83–93. https://doi.org/10.1111/j.1460-9568.2005.04539.x
Cai Q, Xu G, Liu J, Wang L, Deng G, Liu J, Chen Z (2016) A modification of intraluminal middle cerebral artery occlusion/reperfusion model for ischemic stroke with laser Doppler flowmetry guidance in mice. Neuropsychiatr Dis Treat 12:2851–2858. https://doi.org/10.2147/NDT.S118531
Article PubMed PubMed Central Google Scholar
Chen B, Zhang Y, Chen S, Li X, Dong J, Chen W, Tao S, Yang W, Zhang Y (2021) The role of vascular endothelial growth factor in ischemic stroke. Pharmazie 76(4):127–131. https://doi.org/10.1691/ph.2021.1315
Article CAS PubMed Google Scholar
Cheng Q, Zhang Z, Zhang S, Yang H, Zhang X, Pan J, Weng L, Sha D, Zhu M, Hu X, Xu Y (2015) Human umbilical cord mesenchymal stem cells protect against ischemic brain injury in mouse by regulating peripheral immunoinflammation. Brain Res 1594:293–304. https://doi.org/10.1016/j.brainres.2014.10.065
Article CAS PubMed Google Scholar
Chin S-P, Saffery NS, Then K-Y, Cheong S-K (2024) Preclinical assessments of safety and tumorigenicity of very high doses of allogeneic human umbilical cord mesenchymal stem cells. In Vitro Cell Dev Biol Anim. https://doi.org/10.1007/s11626-024-00852-z
Article PubMed PubMed Central Google Scholar
Chin SP, Mohd-Shahrizal MY, Liyana MZ, Then KY, Cheong SK (2020) High dose of intravenous allogeneic umbilical cord-derived mesenchymal stem cells (CLV-100) infusion displays better immunomodulatory effect among healthy volunteers: a phase 1 clinical study. Stem Cells Int 2020:4–8. https://doi.org/10.1155/2020/8877003
Chrostek MR, Fellows EG, Crane AT, Grande AW, Low WC (2019) Efficacy of stem cell-based therapies for stroke. Brain Res 1722:1–6. https://doi.org/10.1016/j.brainres.2019.146362
Clausen BH, Lambertsen KL, Dagnæs-Hansen F, Babcock AA, von Linstow CU, Meldgaard M, Kristensen BW, Deierborg T, Finsen B (2016) Cell therapy centered on IL-1Ra is neuroprotective in experimental stroke. Acta Neuropathol 131(5):775–791. https://doi.org/10.1007/s00401-016-1541-5
Article CAS PubMed PubMed Central Google Scholar
Dabrowska S, Andrzejewska A, Lukomska B, Janowski M (2019) Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. J Neuroinflammation 16(1):1–18. https://doi.org/10.1186/s12974-019-1571-8
Davoli MA, Fourtounis J, Tam J, Xanthoudakis S, Nicholson D, Robertson GS, Ng GYK, Xu D (2002) Immunohistochemical and biochemical assessment of caspase-3 activation and DNA fragmentation following transient focal ischemia in the rat. Neuroscience 115(1):125–136. https://doi.org/10.1016/S0306-4522(02)00376-7
Article CAS PubMed Google Scholar
Doǧan A, Başkaya MK, Rao VLR, Rao AM, Dempsey RJ (1998) Intraluminal suture occlusion of the middle cerebral artery in spontaneously hypertensive rats. Neurol Res 20(3):265–270. https://doi.org/10.1080/01616412.1998.11740517
Fluri F, Schuhmann MK, Kleinschnitz C (2015) Animal models of ischemic stroke and their application in clinical research. Drug des Dev Ther 9:3445–3454. https://doi.org/10.2147/DDDT.S56071
Glatz T, Stöck I, Nguyen-Ngoc M, Gohlke P, Herdegen T, Culman J, Zhao Y (2010) Peroxisome-proliferator-activated receptors γ and peroxisome-proliferator-activated receptors β/δ and the regulation of interleukin 1 receptor antagonist expression by pioglitazone in ischaemic brain. J Hypertens 28(7):1488–1497. https://doi.org/10.1097/HJH.0b013e3283396e4e
Article CAS PubMed Google Scholar
Guo Y, Peng Y, Zeng H, Chen G (2021). Progress in mesenchymal stem cell therapy for ischemic stroke. Stem Cells Int https://doi.org/10.1155/2021/9923566
Gusel’nikova VV, Korzhevskiy DE (2015) NeuN as a neuronal nuclear anti5gen and neuron differentiation marker. Acta Naturae 7(2):42–47. https://doi.org/10.32607/20758251-2015-7-2-42-47
Article PubMed PubMed Central Google Scholar
Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87(5):779–789. https://doi.org/10.1189/jlb.1109766
Article CAS PubMed PubMed Central Google Scholar
Jolien De M, Jolien De P, Said HI (2018). Stem cell therapy for ischemic stroke: from bench to bedside. Int J Critic Care Emerg Med 4(2). https://doi.org/10.23937/2474-3674/1510058
Kim KK, Adelstein RS, Kawamoto S (2009) Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem 284(45):31052–31061. https://doi.org/10.1074/jbc.M109.052969
Article CAS PubMed PubMed Central Google Scholar
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT (2018) Inflammation as a central mechanism in Alzheimer’s disease. Alzheim Dementia: Transl Res Clin Interven 4:575–590. https://doi.org/10.1016/j.trci.2018.06.014
Kuriakose D, Xiao Z (2020) Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci 21(20):1–24. https://doi.org/10.3390/ijms21207609
Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 7(97):1–11. https://doi.org/10.1186/1479-5876-7-97
Lancaster E, Dalmau J (2012) Neuronal autoantigens-pathogenesis, associated disorders and antibody testing. Nat Rev Neurol 8(7):380–390. https://doi.org/10.1038/nrneurol.2012.99
Article CAS PubMed PubMed Central Google Scholar
Lavezzi AM, Corna MF, Matturri L (2013) Neuronal nuclear antigen (NeuN): a useful marker of neuronal immaturity in sudden unexplained perinatal death. J Neurol Sci 329(1–2):45–50. https://doi.org/10.1016/j.jns.2013.03.012
Article CAS PubMed Google Scholar
Li J, Wu Z, Zhao L, Liu Y, Su Y, Gong X, Liu F, Zhang L (2023a) The heterogeneity of mesenchymal stem cells: an important issue to be addressed in cell therapy. Stem Cell Res Ther 14(1):1–14. https://doi.org/10.1186/s13287-023-03587-y
Li W, Shi L, Hu B, Hong Y, Zhang H, Li X, Zhang Y (2021a) Mesenchymal stem cell-based therapy for stroke: current understanding and challenges. Front Cell Neurosci 15:1–12. https://doi.org/10.3389/fncel.2021.628940
Li Y, Huang J, Wang J, Xia S, Ran H, Gao L, Feng C, Gui L, Zhou Z, Yuan J (2023b) Human umbilical cord-derived mesenchymal stem cell transplantation supplemented with curcumin improves the outcomes of ischemic stroke via AKT/GSK-3β/β-TrCP/Nrf2 axis. J Neuroinflammation 20(1):1–23. https://doi.org/10.1186/s12974-023-02738-5
Li Y, Li M, Wang M, Zhou Y, Chang J, Xian Y, Wang D, Mao L, Jin H, Hu B (2020) Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc Neurol 5(3):279–284. https://doi.org/10.1136/svn-2020-000431
Article PubMed PubMed Central Google Scholar
Li Y, Zhong W, Tang X (2021) Strategies to improve the efficiency of transplantation with mesenchymal stem cells for the treatment of ischemic stroke: a review of recent progress. Stem Cells Int 2021:9929128. https://doi.org/10.1155/2021/9929128
Article CAS PubMed PubMed Central Google Scholar
Lin YC, Ko TL, Shih YH, Lin MYA, Fu TW, Hsiao HS, Hsu JYC, Fu YS (2011) Human umbilical mesenchymal stem cells promote recovery after ischemic stroke. Stroke 42(7):2045–2053. https://doi.org/10.1161/STROKEAHA.110.603621
Comments (0)