Reduced myogenic differentiation capacity of satellite cell-derived myoblasts in male ICR mice compared with male C57BL/6 and BALB/c mice

Allen RE, Temm-Grove CJ, Sheehan SM, Rice G (1997) Chapter 8 Skeletal Muscle Satellite Cell Cultures. In: Methods in Cell Biology. pp 155–176

Chaiyasing R, Ishikawa T, Warita K, Hosaka YZ (2021a) Absence of estrogen receptors delays myoregeneration and leads to intermuscular adipogenesis in a low estrogen status: Morphological comparisons in estrogen receptor alpha and beta knock out mice. J Vet Med Sci 83:1022–1030. https://doi.org/10.1292/jvms.20-0696

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaiyasing R, Sugiura A, Ishikawa T et al (2021b) Estrogen modulates the skeletal muscle regeneration process and myotube morphogenesis: Morphological analysis in mice with a low estrogen status. J Vet Med Sci 83:1812–1819. https://doi.org/10.1292/jvms.21-0495

Article  CAS  PubMed  PubMed Central  Google Scholar 

Collins BC, Arpke RW, Larson AA et al (2019) Estrogen Regulates the Satellite Cell Compartment in Females. Cell Rep 28:368-381.e6. https://doi.org/10.1016/j.celrep.2019.06.025

Article  CAS  PubMed  PubMed Central  Google Scholar 

Collins CA, Olsen I, Zammit PS et al (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301. https://doi.org/10.1016/j.cell.2005.05.010

Article  CAS  PubMed  Google Scholar 

Contreras O, Córdova-Casanova A, Brandan E (2021) PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myogenic cells. Cell Signal 84:110036. https://doi.org/10.1016/j.cellsig.2021.110036

Article  CAS  PubMed  Google Scholar 

Crawley JN, Belknap JK, Collins A et al (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology 132:107–124. https://doi.org/10.1007/s002130050327

Article  CAS  PubMed  Google Scholar 

Deasy BM, Lu A, Tebbets JC et al (2007) A role for cell sex in stem cell-mediated skeletal muscle regeneration: Female cells have higher muscle regeneration efficiency. J Cell Biol 177:73–86. https://doi.org/10.1083/jcb.200612094

Article  CAS  PubMed  PubMed Central  Google Scholar 

Englund DA, Peck BD, Murach KA et al (2019) Resident muscle stem cells are not required for testosterone-induced skeletal muscle hypertrophy. Am J Physiol - Cell Physiol 317:C719–C724. https://doi.org/10.1152/ajpcell.00260.2019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukada SI, Morikawa D, Yamamoto Y et al (2010) Genetic background affects properties of satellite cells and mdx phenotypes. Am J Pathol 176:2414–2424. https://doi.org/10.2353/ajpath.2010.090887

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furuichi Y, Kawabata Y, Aoki M et al (2021) Excess Glucose Impedes the Proliferation of Skeletal Muscle Satellite Cells Under Adherent Culture Conditions. Front Cell Dev Biol 9:1–11. https://doi.org/10.3389/fcell.2021.640399

Article  Google Scholar 

Grounds M, McGeachie J (1989) A comparison of muscle precursor replication in crush-injured skeletal muscle of Swiss and BALBc mice. Cell Tissue Res 255:385–391. https://doi.org/10.1007/BF00224122

Article  CAS  PubMed  Google Scholar 

Grounds MD (1987) Phagocytosis of necrotic muscle in muscle isografts is influenced by the strain, age, and sex of host mice. J Pathol 153:71–82. https://doi.org/10.1002/path.1711530110

Article  CAS  PubMed  Google Scholar 

Grounds MD, McGeachie JK (1990) Myogenic cell replication in minced skeletal muscle isografts of Swiss and BALBc mice. Muscle Nerve 13:305–313. https://doi.org/10.1002/mus.880130405

Article  CAS  PubMed  Google Scholar 

Guilhot C, Catenacci M, Lofaro S, Rudnicki MA (2024) The satellite cell in skeletal muscle: A story of heterogeneity. Elsevier

Heydemann A, Huber JM, Demonbreun A et al (2005) Genetic background influences muscular dystrophy. Neuromuscul Disord 15:601–609. https://doi.org/10.1016/j.nmd.2005.05.004

Article  PubMed  Google Scholar 

Jin P, Sejersen T, Ringertz NR (1991) Recombinant platelet-derived growth factor-BB stimulates growth and inhibits differentiation of Rat L6 myoblasts. J Biol Chem 266:1245–1249. https://doi.org/10.1016/s0021-9258(17)35307-3

Article  CAS  PubMed  Google Scholar 

Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244

Article  CAS  PubMed  Google Scholar 

Keefe AC, Lawson JA, Flygare SD et al (2015) Muscle stem cells contribute to myofibres in sedentary adult mice. Nat Commun 6:7087. https://doi.org/10.1038/ncomms8087

Article  CAS  PubMed  Google Scholar 

Kitajima Y, Ono Y (2016) Estrogens maintain skeletal muscle and satellite cell functions. J Endocrinol 229:267–275. https://doi.org/10.1530/JOE-15-0476

Article  CAS  PubMed  Google Scholar 

Lagord C, Soulet L, Bonavaud S et al (1998) Differential myogenicity of satellite cells isolated from extensor digitorum longus (EDL) and soleus rat muscles revealed in vitro. Cell Tissue Res 291:455–468. https://doi.org/10.1007/s004410051015

Article  CAS  PubMed  Google Scholar 

Lu A, Tseng C, Guo P et al (2022) The role of the aging microenvironment on the fate of PDGFRβ lineage cells in skeletal muscle repair. Stem Cell Res Ther 13:1–12. https://doi.org/10.1186/s13287-022-03072-y

Article  CAS  Google Scholar 

Maeno T, Arimatsu R, Ojima K et al (2023) Netrin-4 synthesized in satellite cell-derived myoblasts stimulates autonomous fusion. Exp Cell Res 430:113698. https://doi.org/10.1016/j.yexcr.2023.113698

Article  CAS  PubMed  Google Scholar 

Maley MAL, Davies MJ, Grounds MD (1995) Extracellular matrix, growth factors, genetics: Their influence on cell proliferation and myotube formation in primary cultures of adult mouse skeletal muscle. Exp Cell Res 219:169–179

Article  CAS  PubMed  Google Scholar 

Maley MAL, Fan Y, Beilharz MW, Grounds MD (1994) Intrinsic differences in MyoD and myogenin expression between primary cultures of SJL/J and BALB/C skeletal muscle. Exp Cell Res 211:99–107. https://doi.org/10.1006/excr.1994.1064

Article  CAS  PubMed  Google Scholar 

Manzano R, Toivonen JM, Calvo AC et al (2011) Sex, fiber-type, and age dependent in vitro proliferation of mouse muscle satellite cells. J Cell Biochem 112:2825–2836. https://doi.org/10.1002/jcb.23197

Article  CAS  PubMed  Google Scholar 

Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495. https://doi.org/10.1083/jcb.9.2.493

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGeachie JK, Grounds MD (1995) Retarded myogenic cell replication in regenerating skeletal muscles of old mice: an autoradiographic study in young and old BALBc and SJL/J mice. Cell Tissue Res 280:277–282

Article  CAS  PubMed  Google Scholar 

Mitchell CA, McGeachie JK, Grounds MD (1992) Cellular differences in the regeneration of murine skeletal muscle: a quantitative histological study in SJL/J and BALB/c mice. Cell Tissue Res 269:159–166. https://doi.org/10.1007/BF00384736

Article  CAS  PubMed  Google Scholar 

Mizunoya W, Wakamatsu JI, Tatsumi R, Ikeuchi Y (2008) Protocol for high-resolution separation of rodent myosin heavy chain isoforms in a mini-gel electrophoresis system. Anal Biochem 377:111–113. https://doi.org/10.1016/j.ab.2008.02.021

Article  CAS  PubMed 

Comments (0)

No login
gif