Ostrom QT et al (2021) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the united States in 2014–2018. Neurooncology 23(Supplement3):iii1–iii105
Louis DN et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820
Louis DN et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neurooncology 23(8):1231–1251
Hewitt KJ et al (2023) Direct image to subtype prediction for brain tumors using deep learning. Neuro-oncology Adv 5(1):vdad139
Weller M et al (2017) European association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 18(6):e315–e329
Van Den Bent MJ et al (2013) Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 31(3):344–350
Cairncross G et al (2013) Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 31(3):337–343
Article CAS PubMed Google Scholar
Brandner S et al (2022) Diagnostic accuracy of 1p/19q codeletion tests in oligodendroglioma: A comprehensive meta-analysis based on a Cochrane systematic review. Neuropathol Appl Neurobiol 48(4):e12790
Article CAS PubMed PubMed Central Google Scholar
Dhawan S et al (2019) Comparison of frame-based versus frameless intracranial stereotactic biopsy: systematic review and meta-analysis. World Neurosurg 127:607–616e4
Lau BL et al (2022) Factors affecting diagnostic yield in stereotactic biopsy for brain lesions: A 5-year single-center series. Neurosurg Rev,: p. 1–8
Lasocki A et al (2021) Conventional MRI features of adult diffuse glioma molecular subtypes: a systematic review. Neuroradiology 63:353–362
Li D et al (2024) Deep learning radiomics nomograms predict isocitrate dehydrogenase (IDH) genotypes in brain glioma: A multicenter study. Magn Reson Imaging,: p. 110314
Tak D et al (2024) Noninvasive molecular subtyping of pediatric low-grade glioma with self-supervised transfer learning. Radiology: Artif Intell 6(3):e230333
Calabrese E et al (2022) Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma. Neuro-oncology Adv 4(1):vdac060
Chen C, Isa NAM, Liu X (2025) A review of convolutional neural network based methods for medical image classification. Comput Biol Med 185:109507
Tupe-Waghmare P et al (2021) Comprehensive genomic subtyping of glioma using semi-supervised multi-task deep learning on multimodal MRI. IEEE Access 9:167900–167910
Karabacak M et al (2022) Deep learning for prediction of isocitrate dehydrogenase mutation in gliomas: a critical approach, systematic review and meta-analysis of the diagnostic test performance using a bayesian approach. Quant Imaging Med Surg 12(8):4033
Article PubMed PubMed Central Google Scholar
Ahmadzadeh AM et al (2025) MRI-derived radiomics and end-to-end deep learning models for predicting glioma ATRX status: a systematic review and meta-analysis of diagnostic test accuracy studies. Clin Imaging 119:110386
McInnes MD et al (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA 319(4):388–396
The EndNote Team, EndNote (2013) Clarivate: Philadelphia, PA
Zhong X et al (2022) Radiomics models for preoperative prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis. Abdom Radiol 47(6):2071–2088
Kocak B et al (2024) METhodological radiomics score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII. Insights Imaging 15(1):8
Article PubMed PubMed Central Google Scholar
Lomer NB et al (2024) MRI-based radiomics for predicting prostate Cancer grade groups: A systematic review and Meta-analysis of diagnostic test accuracy studies. Academic Radiology
Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558
Cluceru J et al (2022) Improving the noninvasive classification of glioma genetic subtype with deep learning and diffusion-weighted imaging. Neurooncology 24(4):639–652
Karami G et al (2023) Combining Multi-Shell diffusion with conventional MRI improves molecular diagnosis of diffuse gliomas with deep learning. Cancers 15(2):482
Article PubMed PubMed Central Google Scholar
Akkus Z et al (2017) Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence. J Digit Imaging 30:469–476
Article PubMed PubMed Central Google Scholar
Ali MB et al (2020) Domain mapping and deep learning from multiple MRI clinical datasets for prediction of molecular subtypes in low grade gliomas. Brain Sci 10(7):463
Article PubMed PubMed Central Google Scholar
Cao S et al (2024) Integrated diagnosis of glioma based on magnetic resonance images with incomplete ground truth labels. Comput Biol Med 180:108968
Chakrabarty S et al (2023) MRI-based classification of IDH mutation and 1p/19q codeletion status of gliomas using a 2.5 D hybrid multi-task convolutional neural network. Neuro-Oncology Adv 5(1):vdad023
Chang P et al (2018) Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. Am J Neuroradiol 39(7):1201–1207
Article CAS PubMed PubMed Central Google Scholar
Nishikawa T et al (2023) Easy-to-use machine learning system for the prediction of IDH mutation and 1p/19q codeletion using MRI images of adult-type diffuse gliomas. Brain Tumor Pathol 40(2):85–92
Article CAS PubMed Google Scholar
Yan J et al (2022) Predicting 1p/19q co-deletion status from magnetic resonance imaging using deep learning in adult-type diffuse lower-grade gliomas: a discovery and validation study. Lab Invest 102(2):154–159
Article CAS PubMed Google Scholar
Zhao K et al (2023) Automatic 1p/19q co-deletion identification of gliomas by MRI using deep learning U-net network. Comput Electr Eng 105:108482
Decuyper M et al (2021) Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation and 1p19q co-deletion in glioma. Comput Med Imaging Graph 88:101831
Ning Z et al (2021) Deep cross-view co-regularized representation learning for glioma subtype identification. Med Image Anal 73:102160
Tripathi PC, Bag S (2022) An attention-guided CNN framework for segmentation and grading of glioma using 3D MRI scans. IEEE/ACM transactions on computational biology and bioinformatics. 20(3):1890–1904
Wu X et al (2024) Biologically interpretable multi-task deep learning pipeline predicts molecular alterations, grade, and prognosis in glioma patients. NPJ Precision Oncol 8(1):181
Yogananda CGB et al (2020) A novel fully automated MRI-based deep-learning method for classification of 1p/19q co-deletion status in brain gliomas. Neuro-oncology advances, 2(Supplement_4): p. iv42-iv48
Tripathi PC, Bag S (2022b) A computer-aided grading of glioma tumor using deep residual networks fusion, vol 215. Computer Methods and Programs in Biomedicine, p 106597
Banerjee S et al (2020) Glioma classification using deep radiomics. SN Comput Sci 1(4):209
van der Voort SR et al (2023) Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning. Neurooncology 25(2):279–289
Ali MB et al (2022) Prediction of glioma-subtypes: comparison of performance on a DL classifier using bounding box areas versus annotated tumors. BMC Biomedical Eng 4(1):4
Han Z et al (2022) Radiogenomic association between the T2-FLAIR mismatch sign and IDH mutation status in adult patients with lower-grade gliomas: an updated systematic review and meta-analysis. Eur Radiol 32(8):5339–5352
Comments (0)