Pharmacoproteomics reveals energy metabolism pathways as therapeutic targets of ivermectin in ovarian cancer toward 3P medical approaches

Konstantinopoulos PA, Matulonis UA. Clinical and translational advances in ovarian cancer therapy. Nat Cancer. 2023;4(9):1239–57. https://doi.org/10.1038/s43018-023-00617-9.

Article  PubMed  Google Scholar 

Webb PM, Jordan SJ. Global epidemiology of epithelial ovarian cancer. Nat Rev Clin Oncol. 2024;21(5):389–400. https://doi.org/10.1038/s41571-024-00881-3.

Article  PubMed  Google Scholar 

Son JH, Lee J, Yum SH, Kim J, Kong TW, Chang SJ, et al. Simplified selection criteria for secondary cytoreductive surgery in recurrent ovarian cancer. Cancers (Basel). 2022;14(16). https://doi.org/10.3390/cancers14163987.

Orr B, Edwards RP. Diagnosis and treatment of ovarian cancer. Hematol Oncol Clin North Am. 2018;32(6):943–64. https://doi.org/10.1016/j.hoc.2018.07.010.

Article  PubMed  Google Scholar 

Kurnit KC, Frumovitz M. Primary mucinous ovarian cancer: options for surgery and chemotherapy. Int J Gynecol Cancer. 2022. https://doi.org/10.1136/ijgc-2022-003806.

Article  PubMed  PubMed Central  Google Scholar 

O’Malley DM, Krivak TC, Kabil N, Munley J, Moore KN. PARP inhibitors in ovarian cancer: a review. Target Oncol. 2023;18(4):471–503. https://doi.org/10.1007/s11523-023-00970-w.

Article  PubMed  PubMed Central  Google Scholar 

Mittica G, Ghisoni E, Giannone G, Genta S, Aglietta M, Sapino A, et al. PARP inhibitors in ovarian cancer. Recent Pat Anticancer Drug Discov. 2018;13(4):392–410. https://doi.org/10.2174/1574892813666180305165256.

Article  CAS  PubMed  Google Scholar 

Gaitskell K, Rogozinska E, Platt S, Chen Y, Abd EAM, Tattersall A, et al. Angiogenesis inhibitors for the treatment of epithelial ovarian cancer. Cochrane Database Syst Rev. 2023;4(4):D7930. https://doi.org/10.1002/14651858.CD007930.pub3.

Article  Google Scholar 

Siminiak N, Czepczynski R, Zaborowski MP, Izycki D. Immunotherapy in ovarian cancer. Arch Immunol Ther Exp (Warsz). 2022;70(1):19. https://doi.org/10.1007/s00005-022-00655-8.

Article  PubMed  Google Scholar 

Porter R, Matulonis UA. Immunotherapy for ovarian cancer. Clin Adv Hematol Oncol. 2022;20(4):240–53.

PubMed  Google Scholar 

Lee BM, Lee SJ, Kim N, Byun HK, Kim YB. Radiotherapy in recurrent ovarian cancer: updated results of involved-field radiation therapy. Int J Gynecol Cancer. 2023;33(7):1106–11. https://doi.org/10.1136/ijgc-2022-004200.

Article  PubMed  Google Scholar 

Lin KY, Kraus WL. PARP inhibitors for cancer therapy. Cell. 2017;169(2):183. https://doi.org/10.1016/j.cell.2017.03.034.

Article  CAS  PubMed  Google Scholar 

Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA Cancer J Clin. 2019;69(4):280–304. https://doi.org/10.3322/caac.21559.

Article  PubMed  Google Scholar 

Jiang X, Yang J, Yu M, Xie W, Cao D, Wu M, et al. Oncofertility in patients with stage I epithelial ovarian cancer: fertility-sparing surgery in young women of reproductive age. World J Surg Oncol. 2017;15(1):154. https://doi.org/10.1186/s12957-017-1222-4.

Article  PubMed  PubMed Central  Google Scholar 

Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review. Semin Oncol Nurs. 2019;35(2):151–6. https://doi.org/10.1016/j.soncn.2019.02.001.

Article  PubMed  Google Scholar 

Borley J, Brown R. Epigenetic mechanisms and therapeutic targets of chemotherapy resistance in epithelial ovarian cancer. Ann Med. 2015;47(5):359–69. https://doi.org/10.3109/07853890.2015.1043140.

Article  CAS  PubMed  Google Scholar 

Wang L, Wang X, Zhu X, Zhong L, Jiang Q, Wang Y, et al. Drug resistance in ovarian cancer: from mechanism to clinical trial. Mol Cancer. 2024;23(1):66. https://doi.org/10.1186/s12943-024-01967-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diaz-Padilla I, Duran I, Clarke BA, Oza AM. Biologic rationale and clinical activity of mTOR inhibitors in gynecological cancer. Cancer Treat Rev. 2012;38(6):767–75. https://doi.org/10.1016/j.ctrv.2012.02.001.

Article  CAS  PubMed  Google Scholar 

Zhang C, Yang J, Chen S, Sun L, Li K, Lai G, et al. Artificial intelligence in ovarian cancer drug resistance advanced 3PM approach: subtype classification and prognostic modeling. EPMA J. 2024;15(3):525–44. https://doi.org/10.1007/s13167-024-00374-4.

Article  CAS  PubMed  Google Scholar 

Jia W, Li N, Wang J, Gong X, Ouedraogo SY, Wang Y, et al. Immune-related gene methylation prognostic instrument for stratification and targeted treatment of ovarian cancer patients toward advanced 3PM approach. EPMA J. 2024;15(2):375–404. https://doi.org/10.1007/s13167-024-00359-3.

Article  PubMed  Google Scholar 

Shim JS, Liu JO. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int J Biol Sci. 2014;10(7):654–63. https://doi.org/10.7150/ijbs.9224.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Turanli B, Altay O, Boren J, Turkez H, Nielsen J, Uhlen M, et al. Systems biology based drug repositioning for development of cancer therapy. Semin Cancer Biol. 2021;68:47–58. https://doi.org/10.1016/j.semcancer.2019.09.020.

Article  CAS  PubMed  Google Scholar 

Banerjee J, Tiwari AK, Banerjee S. Drug repurposing for cancer. Prog Mol Biol Transl Sci. 2024;207:123–50. https://doi.org/10.1016/bs.pmbts.2024.03.032.

Article  PubMed  Google Scholar 

Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther. 2024;9(1):92. https://doi.org/10.1038/s41392-024-01808-1.

Article  PubMed  PubMed Central  Google Scholar 

Elkholy KO, Hegazy O, Erdinc B, Abowali H. Ivermectin: a closer look at a potential remedy. Cureus. 2020;12(9):e10378. https://doi.org/10.7759/cureus.10378.

Article  PubMed  PubMed Central  Google Scholar 

Tang M, Hu X, Wang Y, Yao X, Zhang W, Yu C, et al. Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol Res. 2021;163:105207. https://doi.org/10.1016/j.phrs.2020.105207.

Article  CAS  PubMed  Google Scholar 

Juarez M, Schcolnik-Cabrera A, Duenas-Gonzalez A. The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug. Am J Cancer Res. 2018;8(2):317–31.

CAS  PubMed  PubMed Central  Google Scholar 

Ma SC, Zhang JQ, Yan TH, Miao MX, Cao YM, Cao YB, et al. Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med. 2023;12(10):11073–96. https://doi.org/10.1002/cam4.5594.

Article  PubMed  PubMed Central  Google Scholar 

Juarez M, Schcolnik-Cabrera A, Dominguez-Gomez G, Chavez-Blanco A, Diaz-Chavez J, Duenas-Gonzalez A. Antitumor effects of ivermectin at clinically feasible concentrations support its clinical development as a repositioned cancer drug. Cancer Chemother Pharmacol. 2020;85(6):1153–63. https://doi.org/10.1007/s00280-020-04041-z.

Article  CAS  PubMed  Google Scholar 

Koklesova L, Mazurakova A, Samec M, Kudela E, Biringer K, Kubatka P, et al. Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J. 2022;13(2):177–93. https://doi.org/10.1007/s13167-022-00281-6.

Article  PubMed  PubMed Central  Google Scholar 

Shen K, Pender CL, Bar-Ziv R, Zhang H, Wickham K, Willey E, et al. Mitochondria as cellular and organismal signaling hubs. Annu Rev Cell Dev Biol. 2022;38:179–218. https://doi.org/10.1146/annurev-cellbio-120420-015303.

Comments (0)

No login
gif