Advancing predictive, preventive, and personalized medicine in eyelid diseases: a concerns-based and expandable screening system through structural dissection

Shaw AJ, Collins MJ, Davis BA, Carney LG. Eyelid pressure: inferences from corneal topographic changes. Cornea. 2009;28:181–8. https://doi.org/10.1097/ICO.0b013e31818a7d61.

Article  PubMed  Google Scholar 

Lemp MA, Nichols KK. Blepharitis in the United States 2009: a survey-based perspective on prevalence and treatment. Ocul Surf. 2009;7(2 Suppl):S1–14. https://doi.org/10.1016/s1542-0124(12)70620-1.

Article  PubMed  Google Scholar 

Yen, M.T. EyeWiki. 2023. https://eyewiki.org/Category:Oculoplastics/Orbit. Accessed 15 Oct 2024.

Bacharach J, Lee WW, Harrison AR, Freddo TF. A review of acquired blepharoptosis: prevalence, diagnosis, and current treatment options. Eye (Lond). 2021;35:2468–81. https://doi.org/10.1038/s41433-021-01547-5.

Article  PubMed  Google Scholar 

Akosman, S., Qi, L., Pakhchanian, H., Foos, W., Maliakkal, J., Raiker, R., Belyea, D.A., and Geist, C. Using infodemiology metrics to assess patient demand for oculoplastic surgeons in the United States: insights from Google Search Trends. Orbit. 2022; 1–7. https://doi.org/10.1080/01676830.2022.2142945

Bahçeci Şimşek, İ., and Şirolu, C. Analysis of surgical outcome after upper eyelid surgery by computer vision algorithm using face and facial landmark detection. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2021; 259, 3119–3125. https://doi.org/10.1007/s00417-021-05219-8

Chun YS, Park HH, Park IK, Moon NJ, Park SJ, Lee JK. Topographic analysis of eyelid position using digital image processing software. Acta Ophthalmol. 2017;95:e625–32. https://doi.org/10.1111/aos.13437.

Article  PubMed  Google Scholar 

Van Brummen A, Owen JP, Spaide T, Froines C, Lu R, Lacy M, Blazes M, Li E, Lee CS, Lee AY, Zhang M. PeriorbitAI: artificial intelligence automation of eyelid and periorbital measurements. Am J Ophthalmol. 2021;230:285–96. https://doi.org/10.1016/j.ajo.2021.05.007.

Article  PubMed  PubMed Central  Google Scholar 

Song X, Tong W, Lei C, Huang J, Fan X, Zhai G, Zhou H. A clinical decision model based on machine learning for ptosis. BMC Ophthalmol. 2021;21:169. https://doi.org/10.1186/s12886-021-01923-5.

Article  PubMed  PubMed Central  Google Scholar 

Karlin J, Gai L, LaPierre N, Danesh K, Farajzadeh J, Palileo B, Taraszka K, Zheng J, Wang W, Eskin E, Rootman D. Ensemble neural network model for detecting thyroid eye disease using external photographs. Br J Ophthalmol. 2023;107(11):1722–9. https://doi.org/10.1136/bjo-2022-321833.

Article  PubMed  Google Scholar 

Li Z, Qiang W, Chen H, Pei M, Yu X, Wang L, Li Z, Xie W, Wu X, Jiang J, Wu G. Artificial intelligence to detect malignant eyelid tumors from photographic images. NPJ Digit Med. 2022;5:23. https://doi.org/10.1038/s41746-022-00571-3.

Article  PubMed  PubMed Central  Google Scholar 

Cen LP, Ji J, Lin JW, Ju ST, Lin HJ, Li TP, Wang Y, Yang JF, Liu YF, Tan S, et al. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks. Nat Commun. 2021;12:4828. https://doi.org/10.1038/s41467-021-25138-w.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Son J, Shin JY, Kim HD, Jung KH, Park KH, Park SJ. Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images. Ophthalmology. 2020;127:85–94. https://doi.org/10.1016/j.ophtha.2019.05.029.

Article  PubMed  Google Scholar 

Kurysheva NI, Rodionova OY, Pomerantsev AL, Sharova GA, Golubnitschaja O. Machine learning-couched treatment algorithms tailored to individualized profile of patients with primary anterior chamber angle closure predisposed to the glaucomatous optic neuropathy. EPMA J. 2023;14(3):527–38. https://doi.org/10.1007/s13167-023-00337-1.

Article  PubMed  PubMed Central  Google Scholar 

Choi JY, Yoo TK, Seo JG, Kwak J, Um TT, Rim TH. Multi-categorical deep learning neural network to classify retinal images: a pilot study employing small database. PLoS ONE. 2017;12:e0187336. https://doi.org/10.1371/journal.pone.0187336.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dong L, He W, Zhang R, Ge Z, Wang YX, Zhou J, Xu J, Shao L, Wang Q, Yan Y, et al. Artificial intelligence for screening of multiple retinal and optic nerve diseases. JAMA Netw Open. 2022;5:e229960. https://doi.org/10.1001/jamanetworkopen.2022.9960.

Article  PubMed  PubMed Central  Google Scholar 

Li B, Chen H, Zhang B, Yuan M, Jin X, Lei B, Xu J, Gu W, Wong DCS, He X, et al. Development and evaluation of a deep learning model for the detection of multiple fundus diseases based on colour fundus photography. Br J Ophthalmol. 2022;106(8):1079–86. https://doi.org/10.1136/bjophthalmol-2020-316290.

Article  PubMed  Google Scholar 

Han J, Choi S, Park JI, Hwang JS, Han JM, Lee HJ, Ko J, Yoon J, Hwang DD. Classifying neovascular age-related macular degeneration with a deep convolutional neural network based on optical coherence tomography images. Sci Rep. 2022;12:2232. https://doi.org/10.1038/s41598-022-05903-7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ko YC, Wey SY, Chen WT, Chang YF, Chen MJ, Chiou SH, Liu CJ, Lee CY. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model. PLoS ONE. 2020;15:e0233079. https://doi.org/10.1371/journal.pone.0233079.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017;124:962–9. https://doi.org/10.1016/j.ophtha.2017.02.008.

Article  PubMed  Google Scholar 

Zhang K, Liu X, Xu J, Yuan J, Cai W, Chen T, Wang K, Gao Y, Nie S, Xu X, et al. Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images. Nat Biomed Eng. 2021;5:533–45. https://doi.org/10.1038/s41551-021-00745-6.

Article  PubMed  CAS  Google Scholar 

Golubnitschaja O, Costigliola V, EPMA. General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive, Preventive and Personalised Medicine. EPMA J. 2012;3:14https://doi.org/10.1186/1878-5085-3-14

Nika Bagheri, B.N.W. The Wills Eye Manual: office and emergency room diagnosis and treatment of eye disease. Lippincott Williams & Wilkins; 2017.

Burkat, C.N. EyeWiki: The Eye Encyclopedia written by Eye Physicians & Surgeons. 2023. https://eyewiki.org/Main_Page. Accessed 15 Oct 2024.

Geitgey, A.. Face Recognition(Version 1.2.2). 2018.

Cao J, Lou L, You K, Gao Z, Jin K, Shao J, Ye J. A novel automatic morphologic analysis of eyelids based on deep learning methods. Curr Eye Res. 2021;46:1495–502. https://doi.org/10.1080/02713683.2021.1908569.

Article  PubMed  CAS  Google Scholar 

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S et al An image is worth 16x16 words: transformers for image recognition at scale. International Conference on Learning Representations (ICLR). 2021

Huang G, Liu Z, Pleiss G, Maaten LV, Weinberger KQ. Convolutional networks with dense connectivity. IEEE Trans Pattern Anal Mach Intell. 2022;44:8704–16. https://doi.org/10.1109/tpami.2019.2918284.

Article  PubMed  Google Scholar 

Golubnitschaja O, Potuznik P, Polivka J Jr, Pesta M, Kaverina O, Pieper CC, et al. Ischemic stroke of unclear aetiology: a case-by-case analysis and call for a multi-professional predictive, preventive and personalised approach. EPMA J. 2022;13(4):535–45. https://doi.org/10.1007/s13167-022-00307-z.

Article  PubMed  PubMed Central  Google Scholar 

Song X, Liu Z, Li L, Gao Z, Fan X, Zhai G, Zhou H. Artificial intelligence CT screening model for thyroid-associated ophthalmopathy and tests under clinical conditions. Int J Comput Assist Radiol Surg. 2021;16(2):323–30. https://doi.org/10.1007/s11548-020-02281-1.

Article  PubMed  Google Scholar 

Putterman AM. Margin reflex distance (MRD) 1, 2, and 3. Ophthalmic Plast Reconstr Surg. 2012;28:308–11. https://doi.org/10.1097/IOP.0b013e3182523b7f.

Article  PubMed  Google Scholar 

Yadegari S. Approach to a patient with blepharoptosis. Neurol Sci. 2016;37:1589–96. https://doi.org/10.1007/s10072-016-2633-7.

Article  PubMed  Google Scholar 

Tabuchi H, Nagasato D, Masumoto H, Tanabe M, Ishitobi N, Ochi H, Shimizu Y, and Kiuchi Y Developing an iOS application that uses machine learning for the automated diagnosis of blepharoptosis. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2022; 260, 1329–1335. https://doi.org/10.1007/s00417-021-05475-8.

Hung JY, Chen KW, Perera C, Chiu HK, Hsu CR, Myung D, Luo AC, Fuh, CS, Liao SL, and Kossler AL An outperforming artificial intelligence model to identify referable blepharoptosis for general practitioners. J Pers Med. 2022; 12. https://doi.org/10.3390/jpm12020283

Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, Krapfenbauer K, Mozaffari MS, Costigliola V. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7(1):23. https://doi.org/10.1186/s13167-016-0072-4.

Article  PubMed  PubMed Central  Google Scholar 

Brunmair J, Bileck A, Schmidl D, Hagn G, Meier-Menches SM, Hommer N, Schlatter A, Gerner C, Garhöfer G. Metabolic phenotyping of tear fluid as a prognostic tool for personalised medicine exemplified by T2DM patients. EPMA J. 2022;13(1):107–23. https://doi.org/10.1007/s13167-022-00272-7.

Comments (0)

No login
gif