Characterization of the gut microbiota in drug abuse: prediction, prevention, and personalized medicine to benefit affected populations

Guo Y, et al. The gut-organ-axis concept: advances the application of gut-on-chip technology. Int J Mol Sci. 2023;4. https://doi.org/10.3390/ijms24044089.

Yu M, Yu B, Chen D. The effects of gut microbiota on appetite regulation and the underlying mechanisms. Gut Microbes. 2024;1:2414796. https://doi.org/10.1080/19490976.2024.2414796.

Article  CAS  Google Scholar 

Abrahamsson TR, et al. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014;6:842–50. https://doi.org/10.1111/cea.12253.

Article  Google Scholar 

Shah W, Hillman T, Playford ED, Hishmeh L. Managing the long term effects of COVID-19: summary of NICE, SIGN, and RCGP rapid guideline. BMJ. 2021;n136. https://doi.org/10.1136/bmj.n136.

Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;3:133–46. https://doi.org/10.1038/s41579-022-00846-2.

Article  CAS  Google Scholar 

Yeoh YK, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;4:698–706. https://doi.org/10.1136/gutjnl-2020-323020.

Article  CAS  Google Scholar 

Marsland BJ, Trompette A, Gollwitzer ES. The gut-lung axis in respiratory disease. Ann Am Thorac Soc. 2015;S150–156. https://doi.org/10.1513/AnnalsATS.201503-133AW.

Schuijt TJ, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut. 2016;4:575–83. https://doi.org/10.1136/gutjnl-2015-309728.

Article  CAS  Google Scholar 

Huffnagle GB, Dickson RP, Lukacs NW. The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol. 2017;2:299–306. https://doi.org/10.1038/mi.2016.108.

Article  CAS  Google Scholar 

Bingula R, et al. Desired turbulence? Gut-lung axis, immunity, and lung cancer. J Oncol. 2017;5035371. https://doi.org/10.1155/2017/5035371.

Ren S, et al. Gut microbiome affects the response to immunotherapy in non-small cell lung cancer. Thorac Cancer. 2024;14:1149–63. https://doi.org/10.1111/1759-7714.15303.

Article  CAS  Google Scholar 

Routy B, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;6371:91–7. https://doi.org/10.1126/science.aan3706.

Article  CAS  Google Scholar 

Ai L, et al. Research status and outlook of PD-1/PD-L1 inhibitors for cancer therapy. Drug Des Devel Ther. 2020;3625–3649. https://doi.org/10.2147/DDDT.S267433.

Messaoudene M, et al. A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota. Cancer Discov. 2022;4:1070–87. https://doi.org/10.1158/2159-8290.CD-21-0808.

Article  Google Scholar 

Herbst RS, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;10027:1540–50. https://doi.org/10.1016/S0140-6736(15)01281-7.

Article  CAS  Google Scholar 

Hand TW, et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science. 2012;6101:1553–6. https://doi.org/10.1126/science.1220961.

Article  CAS  Google Scholar 

Bouferraa Y, et al. The role of gut microbiota in overcoming resistance to checkpoint inhibitors in cancer patients: mechanisms and challenges. Int J Mol Sci. 2021;15. https://doi.org/10.3390/ijms22158036.

Frankel AE, et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia. 2017;10:848–55. https://doi.org/10.1016/j.neo.2017.08.004.

Article  CAS  Google Scholar 

Li Y, et al. Exosomes: key messengers mediating the interaction between tumor cells and CD8(+) T cells in the tumor microenvironment. Int J Nanomedicine. 202;653–667. https://doi.org/10.2147/IJN.S502363.

Dora D, et al. Implication of the gut microbiome and microbial-derived metabolites in immune-related adverse events: emergence of novel biomarkers for cancer immunotherapy. Int J Mol Sci. 2023;3. https://doi.org/10.3390/ijms24032769.

Welters ID, et al. Continuous S-(+)-ketamine administration during elective coronary artery bypass graft surgery attenuates pro-inflammatory cytokine response during and after cardiopulmonary bypass. Br J Anaesth. 2011;2:172–9. https://doi.org/10.1093/bja/aeq341.

Article  CAS  Google Scholar 

Jiang M, et al. Evaluation of clinical effects of Esketamine on depression in patients with missed miscarriage: a randomized, controlled, double-blind trial. J Affect Disord. 2023;525–530. https://doi.org/10.1016/j.jad.2023.02.127.

Hashimoto K. Molecular mechanisms of the rapid-acting and long-lasting antidepressant actions of (R)-ketamine. Biochem Pharmacol. 2020;113935. https://doi.org/10.1016/j.bcp.2020.113935.

Minerbi A, Shen S. Gut microbiome in anesthesiology and pain medicine. Anesthesiology. 2022;1:93–108. https://doi.org/10.1097/ALN.0000000000004204.

Article  Google Scholar 

Fang H, et al. Long-term efficacy and safety of monotherapy with a single fresh fecal microbiota transplant for recurrent active ulcerative colitis: a prospective randomized pilot study. Microb Cell Fact. 2021;1:18. https://doi.org/10.1186/s12934-021-01513-6.

Article  CAS  Google Scholar 

Fitzsimons MG. Ethics and management of substance use disorders in anesthesiology: detection, intervention, and treatment through recovery and return. Anesthesiol Clin. 2024;4:673–85. https://doi.org/10.1016/j.anclin.2024.01.005.

Article  Google Scholar 

Volkow ND, Blanco C. Fentanyl and other opioid use disorders: treatment and research needs. Am J Psychiatry. 2023;6:410–7. https://doi.org/10.1176/appi.ajp.20230273.

Article  Google Scholar 

Satish S, et al. HIV, opioid use, and alterations to the gut microbiome: elucidating independent and synergistic effects. Front Immunol. 2023;1156862. https://doi.org/10.3389/fimmu.2023.1156862.

Zadori ZS, Kiraly K, Al-Khrasani M, Gyires K. Interactions between NSAIDs, opioids and the gut microbiota - future perspectives in the management of inflammation and pain. Pharmacol Ther. 2023;108327. https://doi.org/10.1016/j.pharmthera.2022.108327.

Banerjee S, et al. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol. 2016;6:1418–28. https://doi.org/10.1038/mi.2016.9.

Article  CAS  Google Scholar 

Akbarali HI, Dewey WL. Gastrointestinal motility, dysbiosis and opioid-induced tolerance: is there a link? Nat Rev Gastroenterol Hepatol. 2019;6:323–4. https://doi.org/10.1038/s41575-019-0150-x.

Article  Google Scholar 

Kang M, et al. The effect of gut microbiome on tolerance to morphine mediated antinociception in mice. Sci Rep. 2017;42658. https://doi.org/10.1038/srep42658.

Chivero ET, Sil S, Kumar M, Buch S. Substance use, microbiome and psychiatric disorders. Pharmacol Biochem Behav. 2022;173432. https://doi.org/10.1016/j.pbb.2022.173432.

Chivero ET, et al. Cocaine induces inflammatory gut milieu by compromising the mucosal barrier integrity and altering the gut microbiota colonization. Sci Rep. 2019;1:12187. https://doi.org/10.1038/s41598-019-48428-2.

Article  CAS  Google Scholar 

Cattaneo A, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017;60–68. https://doi.org/10.1016/j.neurobiolaging.2016.08.019.

Vogt NM, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep. 2017;1:13537. https://doi.org/10.1038/s41598-017-13601-y.

Article  CAS  Google Scholar 

Luca M, Di Mauro M, Di Mauro M, Luca A. Gut microbiota in Alzheimer’s disease, depression, and type 2 diabetes mellitus: the role of oxidative stress. Oxid Med Cell Longev. 2019;4730539. https://doi.org/10.1155/2019/4730539.

Garcez ML, Jacobs KR, Guillemin GJ. Microbiota alterations in Alzheimer’s disease: involvement of the kynurenine pathway and inflammation. Neurotox Res. 2019;2:424–36. https://doi.org/10.1007/s12640-019-00057-3.

Article  Google Scholar 

Brooks AW, et al. Neuroinflammation and brain health risks in veterans exposed to burn pit toxins. Int J Mol Sci. 2024;18. https://doi.org/10.3390/ijms25189759.

Marin-Castaneda LA, et al. Mechanisms of ozone-induced neurotoxicity in the development and progression of dementia: a brief review. Front Aging Neurosci. 2024;1494356. https://doi.org/10.3389/fnagi.2024.1494356.

Mumaw CL, et al. Microglial priming through the lung-brain axis: the role of air pollution-induced circulating factors. FASEB J. 2016;5:1880–91. https://doi.org/10.1096/fj.201500047.

Article  CAS  Google Scholar 

Rubin L, et al. Neurotrophic factors and their receptors in lung development and implications in lung diseases. Cytokine Growth Factor Rev. 2021;84–94. https://doi.org/10.1016/j.cytogfr.2021.01.008.

Barcik W, Boutin RCT, Sokolowska M, Finlay BB. The role of lung and gut microbiota in the pathology of asthma. Immunity. 2020;2:241–55. https://doi.org/10.1016/j.immuni.2020.01.007.

Article  CAS  Google Scholar 

Johnson SD, et al. Therapeutic implications of SARS-CoV-2 dysregulation of the gut-brain-lung axis. World J Gastroenterol. 2021;29:4763–83. https://doi.org/10.3748/wjg.v27.i29.4763.

Article  CAS  Google Scholar 

Wang JF, Shi CY, Ying HZ. Cephalosporins-induced intestinal dysbiosis exacerbated pulmonary endothelial barrier disruption in streptococcus pneumoniae-infected mice. Front Cell Infect Microbiol. 2022;997368. https://doi.org/10.3389/fcimb.2022.997368.

Luo J, et al. A comparative study of the effects of different fucoidans on cefoperazone-induced gut microbiota disturbance and intestinal inflammation. Food Funct. 2021;19:9087–97. https://doi.org/10.1039/d1fo00782c.

Article  CAS  Google Scholar 

Zuo T, et al. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge. Gastroenterology. 2020;4:1302–10. https://doi.org/10.1053/j.gastro.2020.06.048. (e1305).

Article  CAS  Google Scholar 

Heskin J, et al. Caution required with use of ritonavir-boosted PF-07321332 in COVID-19 management. Lancet. 2022;10319:21–2. https://doi.org/10.1016/S0140-6736(21)02657-X.

Article  Google Scholar 

Qian Q, et al. Direct Evidence of Active SARS-CoV-2 Replication in the Intestine. Clin Infect Dis. 2021;3:361–6. https://doi.org/10.1093/cid/ciaa925.

Article  CAS 

Comments (0)

No login
gif