Almeida F, Wolf JM, Casadevall A (2015) Virulence-associated enzymes of Cryptococcus neoformans. Eukaryot Cell 14(12):1173–1185. https://doi.org/10.1128/EC.00103-15
Article CAS PubMed PubMed Central Google Scholar
Almeida-Paes R, Frases S (2023) Repurposing drugs for fungal infections: advantages and limitations. Future Microbiol. https://doi.org/10.2217/fmb-2023-0108
Alves V, Martins PH, Miranda B, de Andrade IB, Pereira L, Maeda CT, de Sousa Araújo GR, Frases S (2023) Assessing the in vitro potential of glatiramer acetate (copaxone®) as a chemotherapeutic candidate for the treatment of Cryptococcus neoformans infection. J Fungi 9(8):783. https://doi.org/10.3390/jof9080783
Arendrup MC, Meletiadis J, Mouton JW, Lagrou K, Hamal P, Guinea J, AFST/ESCMID/EUCAST (2017) EUCAST DEFINITIVE DOCUMENT E.DEF 7.3.1. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts. 1–21. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7_3_1_Yeast_testing__definitive.pdf
Barbosa JO, Rossoni RD, Vilela SFG, De Alvarenga JA, Velloso MDS, Prata MCDA, Jorge AOC, Junqueira JC (2016) Streptococcus mutans can modulate biofilm formation and attenuate the virulence of Candida albicans. PLoS ONE 11(3):e0150457. https://doi.org/10.1371/journal.pone.0150457
Article CAS PubMed PubMed Central Google Scholar
Borrelli F, Izzo AA (2009) Herb–drug interactions with St John’s wort (Hypericum perforatum): an update on clinical observations. AAPS J 11:710–727. https://doi.org/10.1208/s12248-009-9146-8
Article CAS PubMed PubMed Central Google Scholar
Cassetta MI, Marzo T, Fallani S, Novelli A, Messori L (2014) Drug repositioning: auranofin as a prospective antimicrobial agent for the treatment of severe staphylococcal infections. Biometals 27(4):787–791. https://doi.org/10.1007/s10534-014-9743-6
Article CAS PubMed Google Scholar
Chastain DB, Kung VM, Vargas Barahona L, Jackson BT, Golpayegany S, Franco-Paredes C, Thompson GR, Henao-Martínez AF (2022) Characteristics and outcomes of cryptococcosis among patients with and without COVID-19. J Fungi 8(11):1234. https://doi.org/10.3390/jof8111234
Chen T, Mwenge L, Lakhi S, Chanda D, Mwaba P, Molloy SF, Gheorghe A, Griffiths UK, Heyderman RS, Kanyama C, Kouanfack C, Mfinanga S, Chan AK, Temfack E, Kivuyo S, Hosseinipour MC, Lortholary O, Loyse A, Jaffar S, Niessen LW (2019) Healthcare costs and life-years gained from treatments within the advancing cryptococcal meningitis treatment for africa (ACTA) trial on cryptococcal meningitis: a comparison of antifungal induction strategies in sub-saharan africa. Clin Infect Dis 69(4):588–595. https://doi.org/10.1093/cid/ciy971
Article PubMed PubMed Central Google Scholar
Costa Silva RA, da Silva CR, de Andrade Neto JB, da Silva AR, Campos RS, Sampaio LS, do Nascimento FBSA, da Silva Gaspar B, da Cruz Fonseca SG, Josino MAA, Grangeiro TB, Gaspar DM, de Lucena DF, de Moraes MO, Cavalcanti BC, Nobre Júnior HV (2017) In vitro anti-Candida activity of selective serotonin reuptake inhibitors against fluconazole-resistant strains and their activity against biofilm-forming isolates. Microb Pathog 107:341–348. https://doi.org/10.1016/j.micpath.2017.04.008
Article CAS PubMed Google Scholar
da Silva CR, do Amaral Valente Sá LG, Ferreira TL, Leitão AC, de Farias Cabral VP, Rodrigues DS, Barbosa AD, Moreira LEA, Filho HLP, de Andrade Neto JB, Rios MEF, Cavalcanti BC, Magalhães HIF, de Moraes MO, Nobre HV (2023) Antifungal activity of selective serotonin reuptake inhibitors against Cryptococcus spp and their possible mechanism of action. J Med Mycol 33(4):101431. https://doi.org/10.1016/j.mycmed.2023.101431
Deng H, Song J, Huang Y, Yang C, Zang X, Zhou Y, Li H, Dai B, Xue X (2023) Combating increased antifungal drug resistance in Cryptococcus, what should we do in the future? Acta Biochim Biophys Sin 55(4):540–547. https://doi.org/10.3724/abbs.2023011
Article CAS PubMed PubMed Central Google Scholar
Feng X, Fu X, Ling B, Wang L, Liao W, Yao Z (2013) Development of a singleplex PCR assay for rapid identification and differentiation of Cryptococcus neoformans var. grubii, Cryptococcus neoformans var. neoformans, Cryptococcus gattii, and hybrids. J Clin Microbiol 51(6):1920–1923. https://doi.org/10.1128/JCM.00064-13
Article CAS PubMed PubMed Central Google Scholar
Freitas GJC, Ribeiro NQ, Gouveia-Eufrasio L, Emidio ECP, Guimarães GM, César IC, Paixão TA, Oliveira JBS, Caza M, Kronstad JW, Santos DA (2023) Antimalarials and amphotericin B interact synergistically and are new options to treat cryptococcosis. Int J Antimicrob Agents 62(1):106807. https://doi.org/10.1016/j.ijantimicag.2023.106807
Article CAS PubMed Google Scholar
Hazen KC (1998) Fungicidal versus fungistatic activity of terbinafine and itraconazole: An in vitro comparison. J Am Acad Dermatol 38(5):S37–S44. https://doi.org/10.1016/S0190-9622(98)70482-7
Article CAS PubMed Google Scholar
Kane A, Carter DA (2022) Augmenting azoles with drug synergy to expand the antifungal toolbox. Pharmaceuticals 15(4):482. https://doi.org/10.3390/ph15040482
Article CAS PubMed PubMed Central Google Scholar
Katende A, Mbwanji G, Faini D, Nyuri A, Kalinjuma AV, Mnzava D, Hullsiek KH, Rhein J, Weisser M, Meya DB, Boulware DR, Letang E (2019) Short-course amphotericin B in addition to sertraline and fluconazole for treatment of HIV-associated cryptococcal meningitis in rural Tanzania. Mycoses 62(12):1127–1132. https://doi.org/10.1111/myc.12995
Article CAS PubMed PubMed Central Google Scholar
Laniado-Laborín R, Cabrales-Vargas MN (2009) Amphotericin B: side effects and toxicity. Rev Iberoam Micol 26(4):223–227. https://doi.org/10.1016/j.riam.2009.06.003
Martinez LR, Casadevall A (2006) Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 50(3):1021–1033. https://doi.org/10.1128/AAC.50.3.1021-1033.2006
Article CAS PubMed PubMed Central Google Scholar
Martinez LR, Casadevall A (2015) Biofilm formation by Cryptococcus neoformans. Microbiol Spectr 3(3). https://doi.org/10.1128/microbiolspec.MB-0006-2014
Menezes RT, Pereira TC, Junqueira JC, Oliveira LD, Scorzoni L (2022) Synergistic combination of duloxetine hydrochloride and fluconazole reduces the cell growth and capsule size of Cryptococcus neoformans. Anais Da Academia Brasileira de Ciências 94(2):e20211021. https://doi.org/10.1590/0001-3765202220211021
Article CAS PubMed Google Scholar
Munos B (2009) Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discovery 8(12):959–968. https://doi.org/10.1038/nrd2961
Article CAS PubMed Google Scholar
Nochaiwong S, Ruengorn C, Awiphan R, Chai-Adisaksopha C, Tantraworasin A, Phosuya C, Kanjanarat P, Chongruksut W, Sood MM, Thavorn K (2022) Use of serotonin reuptake inhibitor antidepressants and the risk of bleeding complications in patients on anticoagulant or antiplatelet agents: a systematic review and meta-analysis. Ann Med 54(1):80–97. https://doi.org/10.1080/07853890.2021.2017474
Article CAS PubMed Google Scholar
Oprea TI, Mestres J (2012) Drug repurposing: far beyond new targets for old drugs. AAPS J 14(4):759–763. https://doi.org/10.1208/s12248-012-9390-1
Article CAS PubMed PubMed Central Google Scholar
Paulzen M, Gründer G, Veselinovic T, Wolf B, Hiemke C, Lammertz SE (2016) Duloxetine enters the brain–But why is it not found in the cerebrospinal fluid. J Affect Disord 189:159–163. https://doi.org/10.1016/j.jad.2015.08.073
Article CAS PubMed Google Scholar
Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72(2):157–165. https://doi.org/10.1016/j.mimet.2007.11.010
Article CAS PubMed Google Scholar
Pereira TC, De Menezes RT, De Oliveira HC, De Oliveira LD, Scorzoni L (2021) In vitro synergistic effects of fluoxetine and paroxetine in combination with amphotericin B against Cryptococcus neoformans. Pathog Dis 79(2):ftab001. https://doi.org/10.1093/femspd/ftab001
Article CAS PubMed Google Scholar
Periyasami G, Karuppiah P, Karthikeyan P, Palaniappan S (2023) Anti-infective efficacy of duloxetine against catheter-associated urinary tract infections caused by gram-positive bacteria. ACS Ômega 8(50):48317–48325. https://doi.org/10.1021/acsomega.3c07676
Comments (0)