Multicenter investigation of preoperative distinction between primary central nervous system lymphomas and glioblastomas through interpretable artificial intelligence models

Schaff LR, Mellinghoff IK (2023) Glioblastoma and other primary brain malignancies in adults: a review. JAMA 329:574–587

Article  PubMed  PubMed Central  Google Scholar 

Li YM, Suki D, Hess K, Sawaya R (2016) The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg 124:977–988

Article  PubMed  Google Scholar 

Grommes C, DeAngelis LM (2017) Primary CNS Lymphoma. J Clin Oncol 35:2410–2418

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yu X, Hong W, Ye M et al (2023) Atypical primary central nervous system lymphoma and glioblastoma: multiparametric differentiation based on non-enhancing volume, apparent diffusion coefficient, and arterial spin labeling. Eur Radiol 33:5357–5367

Article  PubMed  PubMed Central  Google Scholar 

Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

Article  PubMed  PubMed Central  Google Scholar 

Bathla G, Priya S, Liu Y et al (2021) Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques. Eur Radiol 31:8703–8713

Article  PubMed  CAS  Google Scholar 

Kunimatsu A, Kunimatsu N, Yasaka K et al (2019) Machine Learning-based texture analysis of contrast-enhanced MR Imaging to Differentiate between Glioblastoma and Primary Central Nervous System Lymphoma. Magn Reson Med Sci 18:44–52

Article  PubMed  Google Scholar 

Suh HB, Choi YS, Bae S et al (2018) Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach. Eur Radiol 28:3832–3839

Article  PubMed  Google Scholar 

Xia W, Hu B, Li H et al (2021) Multiparametric-MRI-Based Radiomics Model for differentiating primary Central Nervous System Lymphoma from Glioblastoma: Development and Cross-vendor Validation. J Magn Reson Imaging 53:242–250

Article  PubMed  Google Scholar 

Bathla G, Priya S, Liu Y et al (2021) Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques. Eur Radiol 31:8703–8713

Article  PubMed  CAS  Google Scholar 

Zhang Y, Liang K, He J et al (2021) Deep Learning With Data Enhancement for the differentiation of Solitary and multiple cerebral Glioblastoma, Lymphoma, and Tumefactive demyelinating lesion. Front Oncol 11:665891

Article  PubMed  PubMed Central  Google Scholar 

McAvoy M, Prieto PC, Kaczmarzyk JR et al (2021) Classification of glioblastoma versus primary central nervous system lymphoma using convolutional neural networks. Sci Rep 11:15219

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guha A, Goda JS, Dasgupta A et al (2022) Classifying primary central nervous system lymphoma from glioblastoma using deep learning and radiomics based machine learning approach - a systematic review and meta-analysis. Front Oncol 12:884173

Article  PubMed  PubMed Central  Google Scholar 

Zhang B, Cai H, Song Y, Tao L, Li Y (2022) Computer-aided Recognition based on decision-level Multimodal Fusion for Depression. IEEE J Biomedical Health Inf 26:3466–3477

Article  Google Scholar 

Atrey PK, Hossain MA, El Saddik A, Kankanhalli MS (2010) Multimodal fusion for multimedia analysis: a survey. Multimedia Syst 16:345–379

Article  Google Scholar 

Pinar AJ, Rice J, Hu L, Anderson DT, Havens TC (2017) Efficient multiple Kernel classification using feature and decision Level Fusion. IEEE Trans Fuzzy Syst 25:1403–1416

Article  Google Scholar 

Tjoa E, Guan C (2021) A Survey on Explainable Artificial Intelligence (XAI): toward Medical XAI. IEEE Trans Neural Networks Learn Syst 32:4793–4813

Article  Google Scholar 

Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictionsProceedings of the 31st International Conference on Neural Information Processing Systems. Curran Associates Inc., Long Beach, California, USA, pp 4768–4777

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization2017 IEEE International Conference on Computer Vision (ICCV), pp 618–626

Xia W, Hu B, Li H et al (2021) Deep Learning for Automatic Differential diagnosis of primary Central Nervous System Lymphoma and Glioblastoma: multi-parametric magnetic resonance imaging based convolutional neural network model. J Magn Reson Imaging 54:880–887

Article  PubMed  Google Scholar 

Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18:203–211

Article  PubMed  CAS  Google Scholar 

Bakas S, Akbari H, Sotiras A et al (2017) Advancing the Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4:170117

Article  PubMed  PubMed Central  Google Scholar 

Bakas S, Reyes M, Battistella E et al (2018) Identifying the best machine learning algorithms for Brain Tumor Segmentation. Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

Menze BH, Jakab A, Bauer S et al (2015) The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024

Article  PubMed  Google Scholar 

van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational Radiomics System to Decode the Radiographic phenotype. Cancer Res 77:e104–e107

Article  PubMed  PubMed Central  Google Scholar 

Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image Biomarker Standardization Initiative: standardized quantitative Radiomics for High-Throughput Image-based phenotyping. Radiology 295:328–338

Article  PubMed  Google Scholar 

Maaten Lvd, Hinton GE (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

Google Scholar 

Minnoor M, Baths V (2023) Diagnosis of breast Cancer using Random forests. Procedia Comput Sci 218:429–437

Article  Google Scholar 

Dosovitskiy A, Beyer L, Kolesnikov A et al (2020) An image is worth 16x16 words: transformers for Image Recognition at Scale. https://doi.org/10.48550/arXiv.2010.11929

Vaswani A, Shazeer N, Parmar N et al (2017) Attention is all you needProceedings of the 31st International Conference on Neural Information Processing Systems. Curran Associates Inc., Long Beach, California, USA, pp 6000–6010

Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S (2022) A ConvNet for the 2020s2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 11966–11976

Mehta S, Rastegari M (2021) MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision TransformerInternational Conference on Learning Representations

Hanmandlu M, Grover J, Gureja A, Gupta HM (2011) Score level fusion of multimodal biometrics using triangular norms. Pattern Recognit Lett 32:1843–1850

Article  Google Scholar 

Hanmandlu M, Grover J, Madasu VK, Vasirkala S (2010) Score level fusion of hand based biometrics using t-norms2010 IEEE International Conference on Technologies for Homeland Security (HST), pp 70–76

Zhang Y, Weng Y, Lund J (2022) Applications of Explainable Artificial Intelligence in Diagnosis and Surgery. Diagnostics (Basel) 12

Gunning D, Stefik M, Choi J, Miller T, Stumpf S, Yang GZ (2019) XAI-Explainable artificial intelligence. Sci Robot 4

Feng A, Li L, Huang T et al (2023) Differentiating glioblastoma from primary central nervous system lymphoma of atypical manifestation using multiparametric magnetic resonance imaging: a comparative study. Heliyon 9:e15150

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dandois V, De Coene B, Laloux P, Godfraind C, Cosnard G (2011) Increased relative cerebral blood volume (rCBV) in brain lymphoma. J Neuroradiol 38:191–193

Article  PubMed  CAS  Google Scholar 

Sugahara T, Korogi Y, Shigematsu Y et al (1999) Perfusion-sensitive MRI of cerebral lymphomas: a preliminary report. J Comput Assist Tomogr 23:232–237

Article  PubMed  CAS  Google Scholar 

Hakyemez B, Erdogan C, Bolca N, Yildirim N, Gokalp G, Parlak M (2006) Evaluation of different cerebral mass lesions by perfusion-weighted MR imaging. J Magn Reson Imaging 24:817–824

Article  PubMed  Google Scholar 

Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

Article  PubMed  Google Scholar 

Hsu SPC, Hsiao TY, Pai LC, Sun CW (2022) Differentiation of primary central nervous system lymphoma from glioblastoma using optical coherence tomography based on attention ResNet. Neurophotonics 9:015005

Article  PubMed  PubMed Central  Google Scholar 

Kang D, Park JE, Kim YH et al (2018) Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Neuro Oncol 20:1251–1261

Comments (0)

No login
gif