Functional connectivity of the pediatric brain

Stedman JM (2013) Aristotle and Modern Cognitive psychology and neuroscience: an analysis of similarities and differences. J Mind Behav 34:121–132

Google Scholar 

Behrens TEJ, Sporns O (2012) Human connectomics. Curr Opin Neurobiol 22:144–153. https://doi.org/10.1016/j.conb.2011.08.005

Article  PubMed  CAS  Google Scholar 

Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1:13–36. https://doi.org/10.1089/brain.2011.0008

Article  PubMed  Google Scholar 

Vértes PE, Bullmore ET (2015) Annual research review: growth connectomics - the organization and reorganization of brain networks during normal and abnormal development. J Child Psychol Psychiatry 56:299–320. https://doi.org/10.1111/jcpp.12365

Article  PubMed  Google Scholar 

Fair DA, Cohen AL, Power JD et al (2009) Functional brain networks develop from a local to distributed organization. PLoS Comput Biol 5:e1000381. https://doi.org/10.1371/journal.pcbi.1000381

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hoff GEA-J, Van den Heuvel MP, Benders MJNL et al (2013) On development of functional brain connectivity in the young brain. Front Hum Neurosci 7:650. https://doi.org/10.3389/fnhum.2013.00650

Article  PubMed  PubMed Central  Google Scholar 

Freilich ER, Gaillard WD (2010) Utility of functional MRI in pediatric neurology. Curr Neurol Neurosci Rep 10:40–46. https://doi.org/10.1007/s11910-009-0077-7

Article  PubMed  Google Scholar 

Li K, Guo L, Nie J et al (2009) Review of methods for functional brain connectivity detection using fMRI. Comput Med Imaging Graph 33:131–139. https://doi.org/10.1016/j.compmedimag.2008.10.011

Article  PubMed  Google Scholar 

Baert AL (1999) Functional MRI, 1st edition. Springer, Berlin Heidelberg

Forster BB, MacKay AL, Whittall KP et al (1998) Functional magnetic resonance imaging: the basics of blood-oxygen-level dependent (BOLD) imaging. Can Assoc Radiol J 49:320–329

PubMed  CAS  Google Scholar 

Kozberg M, Hillman E (2016) Neurovascular coupling and energy metabolism in the developing brain. Prog Brain Res 225:213–242. https://doi.org/10.1016/bs.pbr.2016.02.002

Article  PubMed  PubMed Central  CAS  Google Scholar 

Arichi T, Fagiolo G, Varela M et al (2012) Development of BOLD signal hemodynamic responses in the human brain. NeuroImage 63:663–673. https://doi.org/10.1016/j.neuroimage.2012.06.054

Article  PubMed  Google Scholar 

Anderson AW, Marois R, Colson ER et al (2001) Neonatal auditory activation detected by functional magnetic resonance imaging. Magn Reson Imaging 19:1–5. https://doi.org/10.1016/s0730-725x(00)00231-9

Article  PubMed  Google Scholar 

Brauer J, Neumann J, Friederici AD (2008) Temporal dynamics of perisylvian activation during language processing in children and adults. NeuroImage 41:1484–1492. https://doi.org/10.1016/j.neuroimage.2008.03.027

Article  PubMed  Google Scholar 

Harris JJ, Reynell C, Attwell D (2011) The physiology of developmental changes in BOLD functional imaging signals. Dev Cogn Neurosci 1:199–216. https://doi.org/10.1016/j.dcn.2011.04.001

Article  PubMed  PubMed Central  Google Scholar 

Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541. https://doi.org/10.1002/mrm.1910340409

Article  PubMed  CAS  Google Scholar 

Smith SM, Fox PT, Miller KL et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A 106:13040–13045. https://doi.org/10.1073/pnas.0905267106

Article  PubMed  PubMed Central  Google Scholar 

Fukunaga M, Horovitz SG, van Gelderen P et al (2006) Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. Magn Reson Imaging 24:979–992. https://doi.org/10.1016/j.mri.2006.04.018

Article  PubMed  Google Scholar 

Zou Q-H, Zhu C-Z, Yang Y et al (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172:137–141. https://doi.org/10.1016/j.jneumeth.2008.04.012

Article  PubMed  PubMed Central  Google Scholar 

Smitha K, Akhil Raja K, Arun K et al (2017) Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J 30:305–317. https://doi.org/10.1177/1971400917697342

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang H, Long X-Y, Yang Y et al (2007) Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. NeuroImage 36:144–152. https://doi.org/10.1016/j.neuroimage.2007.01.054

Article  PubMed  Google Scholar 

Vincent JL, Patel GH, Fox MD et al (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86. https://doi.org/10.1038/nature05758

Article  PubMed  CAS  Google Scholar 

Argyropoulou MI, Astrakas LG, Xydis VG et al (2020) Is low-grade intraventricular hemorrhage in very preterm infants an innocent condition? Structural and functional evaluation of the brain reveals regional neurodevelopmental abnormalities. Am J Neuroradiol 41:542–547. https://doi.org/10.3174/ajnr.A6438

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zang Y, Jiang T, Lu Y et al (2004) Regional homogeneity approach to fMRI data analysis. NeuroImage 22:394–400. https://doi.org/10.1016/j.neuroimage.2003.12.030

Article  PubMed  Google Scholar 

De Asis-Cruz J, Bouyssi-Kobar M, Evangelou I et al (2015) Functional properties of resting state networks in healthy full-term newborns. Sci Rep 5. https://doi.org/10.1038/srep17755

Della Rosa PA, Canini M, Marchetta E et al (2021) The effects of the functional interplay between the default Mode and Executive Control Resting State Networks on cognitive outcome in preterm born infants at 6 months of age. Brain Cogn 147:105669. https://doi.org/10.1016/j.bandc.2020.105669

Article  PubMed  Google Scholar 

Doria V, Beckmann CF, Arichi T et al (2010) Emergence of resting state networks in the preterm human brain. Proc Natl Acad Sci U S A 107:20015–20020. https://doi.org/10.1073/pnas.1007921107

Article  PubMed  PubMed Central  Google Scholar 

Fransson P, Åden U, Blennow M, Lagercrantz H (2011) The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb Cortex 21:145–154. https://doi.org/10.1093/cercor/bhq071

Article  PubMed  Google Scholar 

Fransson P, Skiöld B, Horsch S et al (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci U S A 104:15531–15536. https://doi.org/10.1073/pnas.0704380104

Article  PubMed  PubMed Central  Google Scholar 

Khandan Khadem-Reza Z, Shahram MA, Zare H (2023) Altered resting-state functional connectivity of the brain in children with autism spectrum disorder. Radiol Phys Technol 16:284–291. https://doi.org/10.1007/s12194-023-00717-2

Article  PubMed  Google Scholar 

Moore JW, Wilson S, Oldehinkel M et al (2023) Gradient organisation of functional connectivity within resting state networks is present from 25 weeks gestation in the human fetal brain. https://doi.org/10.7554/eLife.90536.1. eLife 12:

Posner J, Park C, Wang Z (2014) Connecting the dots: a review of resting connectivity MRI studies in attention-deficit/hyperactivity disorder. Neuropsychol Rev 24:3–15. https://doi.org/10.1007/s11065-014-9251-z

Article  PubMed  PubMed Central  Google Scholar 

Sylvester CM, Barch DM, Corbetta M et al (2013) Resting state functional connectivity of the ventral attention network in children with a history of depression or anxiety. J Am Acad Child Adolesc Psychiatry 52:1326–1336e5. https://doi.org/10.1016/j.jaac.2013.10.001

Comments (0)

No login
gif