Bai J, Yin L, Yu WJ, Zhang YL, Lin QY, Li HH. Angiotensin II Induces Cardiac Edema and Hypertrophic Remodeling through Lymphatic-Dependent Mechanisms. Oxid Med Cell Longev. 2022;2022:5044046. https://doi.org/10.1155/2022/5044046.
Article CAS PubMed PubMed Central Google Scholar
Basu R, Poglitsch M, Yogasundaram H, Thomas J, Rowe BH, Oudit GY. Roles of Angiotensin Peptides and Recombinant Human ACE2 in Heart Failure. J Am Coll Cardiol. 2017;69:805–19. https://doi.org/10.1016/j.jacc.2016.11.064.
Article CAS PubMed Google Scholar
Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med. 2018;117:76–89. https://doi.org/10.1016/j.freeradbiomed.2018.01.024.
Article CAS PubMed Google Scholar
Cavaillon J-M, Adib-Conquy M. Monocytes/macrophages and sepsis. Crit Care Med. 2005;33:S506-9. https://doi.org/10.1097/01.CCM.0000185502.21012.37.
Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018;392:75–87. https://doi.org/10.1016/s0140-6736(18)30696-2.
Chamsi-Pasha MA, Shao Z, Tang WH. Angiotensin-converting enzyme 2 as a therapeutic target for heart failure. Curr Heart Fail Rep. 2014;11:58–63. https://doi.org/10.1007/s11897-013-0178-0.
Article CAS PubMed Google Scholar
Chávez-Galán L, Olleros ML, Vesin D, Garcia I. Much more than M1 and M2 macrophages, there are also CD169+ and TCR+macrophages. Front Immunol. 2015;26:263. https://doi.org/10.3389/fimmu.2015.00263.
Chen XS, Cui JR, Meng XL, Wang SH, Wei W, Gao YL, Shou ST, Liu YC, Chai YF. Angiotensin-(1–7) ameliorates sepsis-induced cardiomyopathy by alleviating inflammatory response and mitochondrial damage through the NF-κB and MAPK pathways. J Transl Med. 2023;21:21. https://doi.org/10.1186/s12967-022-03842-5.
Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa ASH, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515:431–5. https://doi.org/10.1038/nature13909.
Article CAS PubMed PubMed Central Google Scholar
DeBerge M, Shah SJ, Wilsbacher L, Thorp EB. Macrophages in Heart Failure with Reduced versus Preserved Ejection Fraction. Trends Mol Med. 2019;25:328–40. https://doi.org/10.1016/j.molmed.2019.01.002.
Article PubMed PubMed Central Google Scholar
Ehrman RR, Sullivan AN, Favot MJ, Sherwin RL, Reynolds CA, Abidov A, Levy PD. Pathophysiology, echocardiographic evaluation, biomarker findings, and prognostic implications of septic cardiomyopathy: a review of the literature. Crit Care. 2018;22:112. https://doi.org/10.1186/s13054-018-2043-8.
Article PubMed PubMed Central Google Scholar
Feng Wu, Yan-Ting Zhang, Fei Teng, Hui-Hua Li, Guo S-B. S100a8/a9 contributes to sepsis-induced cardiomyopathy by activating ERK1/2-Drp1-mediated mitochondrial fission and respiratory dysfunction. 2023;115:109716. https://doi.org/10.1016/j.intimp.2023.109716.
Gomez H, Kellum JA. Sepsis-induced acute kidney injury. Curr Opin Crit Care. 2016;22:546–53. https://doi.org/10.1097/MCC.0000000000000356.
Article PubMed PubMed Central Google Scholar
Gurley SB, Allred A, Le TH, Griffiths R, Mao L, Philip N, Haystead TA, Donoghue M, Breitbart RE, Acton SL, Rockman HA, Coffman TM. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest. 2006;116:2218–25. https://doi.org/10.1172/JCI16980.
Article CAS PubMed PubMed Central Google Scholar
Hammer A, Yang G, Friedrich J, Kovacs A, Lee D-H, Grave K, Jörg S, Alenina N, Grosch J, Winkler J, Gold R, Bader M, Manzel A, Rump LC, Müller DN, Linker RA, Stegbauer J. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci. 2016;113:14109–14. https://doi.org/10.1073/pnas.1612668113.
Article CAS PubMed PubMed Central Google Scholar
Hollenberg SM, Singer M. Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol. 2021;18:424–34. https://doi.org/10.1038/s41569-020-00492-2.
Iwata M, Cowling RT, Yeo SJ, Greenberg B. Targeting the ACE2-Ang-(1–7) pathway in cardiac fibroblasts to treat cardiac remodeling and heart failure. J Mol Cell Cardiol. 2011;51:542–7. https://doi.org/10.1016/j.yjmcc.2010.12.003.
Article CAS PubMed Google Scholar
Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M, Sundaram B, Banoth B, Malireddi RKS, Schreiner P, Neale G, Vogel P, Webby R, Jonsson CB, Kanneganti TD. Synergism of TNF-alpha and IFN-gamma Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell. 2021;184(149–68):e17. https://doi.org/10.1016/j.cell.2020.11.025.
Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11:875–9. https://doi.org/10.1038/nm1267.
Article CAS PubMed PubMed Central Google Scholar
Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11:750–61. https://doi.org/10.1038/nri3088.
Article CAS PubMed Google Scholar
Li P, Chen XR, Xu F, Liu C, Li C, Liu H, Wang H, Sun W, Sheng YH, Kong XQ. Alamandine attenuates sepsis-associated cardiac dysfunction via inhibiting MAPKs signaling pathways. Life Sci. 2018;206:106–16. https://doi.org/10.1016/j.lfs.2018.04.010.
Article CAS PubMed Google Scholar
Li Z, Peng M, Chen P, Liu C, Hu A, Zhang Y, Peng J, Liu J, Li Y, Li W, Zhu W, Guan D, Zhang Y, Chen H, Li J, Fan D, Huang K, Lin F, Zhang Z, Guo Z, Luo H, He X, Zhu Y, Li L, Huang B, Cai W, Gu L, Lu Y, Deng K, Yan L, Chen S. Imatinib and methazolamide ameliorate COVID-19-induced metabolic complications via elevating ACE2 enzymatic activity and inhibiting viral entry. Cell Metab. 2022;34:1–17. https://doi.org/10.1016/j.cmet.2022.01.008.
Li J-X, Xiao X, Teng F, Li H-H. Myeloid ACE2 protects against septic hypotension and vascular dysfunction through Ang-(1–7)-Mas-mediated macrophage polarization. Redox Biol. 2024;69:103004. https://doi.org/10.1016/j.redox.2023.103004.
Article CAS PubMed Google Scholar
Liu C, Chen CY, Shang QH, Liu J. Establishment of Ace2 knockout mouse model with CRISPR/Cas9 gene targeting technology. Sheng Li Xue Bao, Acta Physiol Slin. 2019;71:588–96. https://doi.org/10.13294/j.aps.2019.0046.
Liu C, Zou Q, Tang H, Liu J, Zhang S, Fan C, Zhang J, Liu R, Liu Y, Liu R, Zhao Y, Wu Q, Qi Z, Shen Y. Melanin nanoparticles alleviate sepsis-induced myocardial injury by suppressing ferroptosis and inflammation. Bioact Mater. 2023;24:313–21. https://doi.org/10.1016/j.bioactmat.2022.12.026.
Article CAS PubMed Google Scholar
Liu L, Li Y, Li JX, Xiao X, Wan TT, Li HH, Guo SB. ACE2 Expressed on Myeloid Cells Alleviates Sepsis-Induced Acute Liver Injury via the Ang-(1–7)-Mas Receptor Axis. Inflammation. 2024. https://doi.org/10.1007/s10753-023-01949-5.
Meng Y, Yu CH, Li W, Li T, Luo W, Huang S, Wu PS, Cai SX, Li X. Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-kappaB pathway. Am J Respir Cell Mol Biol. 2014;50:723–36. https://doi.org/10.1165/rcmb.2012-0451OC.
Article CAS PubMed Google Scholar
Mouton AJ, Li X, Hall ME, Hall JE. Obesity, Hypertension, and Cardiac Dysfunction. Circ Res. 2020;126:789–806. https://doi.org/10.1161/circresaha.119.312321.
Comments (0)