Investigating the Impact of Intracerebroventricular Streptozotocin on Female Rats with and without Ovaries: Implications for Alzheimer’s Disease

Gaugler J, James B, Johnson T, Reimer J, Scales K, Tom S, Weuve J (2023) 2023 Alzheimer’s disease facts and figures. Alzheimer’s Dement. https://doi.org/10.1002/alz.13016

Article  Google Scholar 

Heneka MT, Carson MJ, Khoury J, El, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A et al (2015) Neuroinflammation in Alzheimer’s Disease. Lancet Neurol 14(4):388. https://doi.org/10.1016/S1474-4422(15)70016-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspect Med 1(1). https://doi.org/10.1101/cshperspect.a006189

Zhang H, Zheng Y (2019) [β amyloid hypothesis in Alzheimer’s Disease:Pathogenesis,Prevention,and Management]. Zhongguo Yi Xue Ke Xue yuan xue bao Acta Academiae Medicinae Sinicae 41(5):702–708. https://doi.org/10.3881/J.ISSN.1000-503X.10875

Article  PubMed  Google Scholar 

Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430(7000):631–639. https://doi.org/10.1038/NATURE02621

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zetterberg H, Mattsson N (2014) Understanding the cause of sporadic Alzheimer’s disease. Expert Rev Neurother 14(6):621–630. https://doi.org/10.1586/14737175.2014.915740

Article  CAS  PubMed  Google Scholar 

Cruchaga C, Del-Aguila JL, Saef B, Black K, Fernandez MV, Budde J, Ibanez L, Deming Y, Kapoor M, Tosto G, Mayeux RP, Holtzman DM, Fagan AM, Morris JC, Bateman RJ, Goate AM, Harari O (2018) Polygenic risk score of sporadic late-onset Alzheimer’s disease reveals a shared architecture with the familial and early-onset forms. Alzheimer’s Dementia: J Alzheimer’s Association 14(2):205–214. https://doi.org/10.1016/J.JALZ.2017.08.013

Article  Google Scholar 

Martin Prince A, Wimo A, Guerchet M, Gemma-Claire Ali M, Wu Y-T, Prina M, Chan Y, K., Xia Z (2015) World Alzheimer Report 2015 The Global Impact of Dementia An AnAlysIs of prevAlence, IncIDence, cosT AnD TrenDs. www.alz.co.uk/worldreport2015corrections

Barnes LL, Wilson RS, Bienias JL, Schneider JA, Evans DA, Bennett DA (2005) Sex differences in the clinical manifestations of Alzheimer Disease Pathology. Arch Gen Psychiatry 62(6):685–691. https://doi.org/10.1001/ARCHPSYC.62.6.685

Article  PubMed  Google Scholar 

Beam CR, Kaneshiro C, Jang JY, Reynolds CA, Pedersen NL, Gatz M (2018) Differences between women and men in incidence rates of Dementia and Alzheimer’s Disease. J Alzheimer’s Disease 64(4). https://doi.org/10.3233/JAD-180141

Lejri I, Grimm A, Eckert A (2018) Mitochondria, Estrogen and female brain aging. Front Aging Neurosci 10(APR). https://doi.org/10.3389/FNAGI.2018.00124

Grimm A, Mensah-Nyagan AG, Eckert A (2016) Alzheimer, mitochondria and gender. Neurosci Biobehav Rev 67:89–101. https://doi.org/10.1016/J.NEUBIOREV.2016.04.012

Article  CAS  PubMed  Google Scholar 

Mandal PK, Tripathi M, Sugunan S (2012) Brain oxidative stress: detection and mapping of anti-oxidant marker glutathione in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem Biophys Res Commun 417(1):43–48. https://doi.org/10.1016/J.BBRC.2011.11.047

Article  CAS  PubMed  Google Scholar 

Ferretti MT, Martinkova J, Biskup E, Benke T, Gialdini G, Nedelska Z, Rauen K, Mantua V, Religa D, Hort J, Santuccione Chadha A, Schmidt R (2020) Sex and gender differences in Alzheimer’s disease: current challenges and implications for clinical practice: position paper of the Dementia and Cognitive disorders Panel of the European Academy of Neurology. Eur J Neurol 27(6):928–943. https://doi.org/10.1111/ENE.14174

Article  CAS  PubMed  Google Scholar 

Wharton W, Gleason CE, Lorenze KR, Markgraf TS, Ries ML, Carlsson CM, Asthana S (2009) Potential role of estrogen in the pathobiology and prevention of Alzheimer’s disease. American Journal of Translational Research, 1(2), 131. /pmc/articles/PMC2776312/

Singh M, Su C (2013) Progesterone and Neuroprotection. Horm Behav 63(2):284. https://doi.org/10.1016/J.YHBEH.2012.06.003

Article  CAS  PubMed  Google Scholar 

Azcoitia I, Barreto GE, Garcia-Segura LM (2019) Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocr 55:100787. https://doi.org/10.1016/J.YFRNE.2019.100787

Article  CAS  Google Scholar 

Brinton RD, Thompson RF, Foy MR, Baudry M, Wang JM, Finch CE, Morgan TE, Pike CJ, Mack WJ, Stanczyk FZ, Nilsen J (2008) Progesterone receptors: form and function in Brain. Front Neuroendocr 29(2):313. https://doi.org/10.1016/J.YFRNE.2008.02.001

Article  CAS  Google Scholar 

Rao YL, Ganaraja B, Murlimanju BV, Joy T, Krishnamurthy A, Agrawal A (2022) Hippocampus and its involvement in Alzheimer’s disease: a review. 3 Biotech 12(2):55. https://doi.org/10.1007/S13205-022-03123-4

Article  PubMed  PubMed Central  Google Scholar 

Pike CJ (2017) Sex and the development of Alzheimer’s disease. J Neurosci Res 95(1–2):671. https://doi.org/10.1002/JNR.23827

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hogervorst E (2013) Effects of gonadal hormones on cognitive Behaviour in Elderly men and women. J Neuroendocrinol 25(11):1182–1195. https://doi.org/10.1111/JNE.12080

Article  CAS  PubMed  Google Scholar 

Li R, Singh M (2014) Sex differences in cognitive impairment and Alzheimer’s disease. Front Neuroendocr 35(3):385–403. https://doi.org/10.1016/J.YFRNE.2014.01.002

Article  Google Scholar 

Barreto G, Veiga S, Azcoitia I, Garcia-Segura LM, Garcia-Ovejero D (2007) Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: role of its metabolites, oestradiol and dihydrotestosterone. Eur J Neurosci 25(10):3039–3046. https://doi.org/10.1111/J.1460-9568.2007.05563.X

Article  PubMed  Google Scholar 

López Rodríguez AB, Mateos Vicente B, Romero-Zerbo SY, Rodriguez-Rodriguez N, Bellini MJ, Rodriguez De Fonseca F, Bermudez-Silva FJ, Azcoitia I, Garcia-Segura LM, Viveros MP (2011) Estradiol decreases cortical reactive astrogliosis after brain injury by a mechanism involving cannabinoid receptors. Cereb Cortex (New York N Y : 1991) 21(9):2046–2055. https://doi.org/10.1093/CERCOR/BHQ277

Article  Google Scholar 

Webster KM, Wright DK, Sun M, Semple BD, Ozturk E, Stein DG, O’Brien TJ, Shultz SR (2015) Progesterone treatment reduces neuroinflammation, oxidative stress and brain damage and improves long-term outcomes in a rat model of repeated mild traumatic brain injury. J Neuroinflamm 12(1). https://doi.org/10.1186/S12974-015-0457-7

Liu JL, Tian DS, Li ZW, Qu WS, Zhan Y, Xie MJ, Yu ZY, Wang W, Wu G (2010) Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial inflammatory response in vitro and in vivo. Brain Res 1316:101–111. https://doi.org/10.1016/J.BRAINRES.2009.12.055

Article  CAS  PubMed  Google Scholar 

Kosaraju J, Gali CC, Khatwal RB, Dubala A, Chinni S, Holsinger RMD, Madhunapantula VSR, Nataraj SKM, Basavan D (2013) Saxagliptin: a dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer’s disease. Neuropharmacology 72:291–300. https://doi.org/10.1016/J.NEUROPHARM.2013.04.008

Article  CAS  PubMed  Google Scholar 

Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S (2000) Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia 43(12):1528–1533. https://doi.org/10.1007/S001250051564/METRICS

Article  CAS  PubMed  Google Scholar 

Lannert H, Hoyer S (1998) Intracerebroventricular Administration of Streptozotocin Causes Long-Term Diminutions in Learning and Memory Abilities and in Cerebral Energy Metabolism in Adult Rats. In Behavioral Neiiroscience (Vol. 112, Issue 5)

Salkovic-Petrisic M, Hoyer S (2007) Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J neural transm. Springer-. www.molgen

Salkovic-Petrisic M, Osmanovic-Barilar J, Brückner MK, Hoyer S, Arendt T, Riederer P (2011) Cerebral amyloid angiopathy in streptozotocin rat model of sporadic Alzheimer’s disease: a long-term follow up study. J Neural Transmission (Vienna Austria: 1996) 118(5):765–772. https://doi.org/10.1007/S00702-011-0651-4

Article  CAS  Google Scholar 

Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P (2006) Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 96(4):1005–1015. https://doi.org/10.1111/J.1471-4159.2005.03637.X

Article  CAS  PubMed  Google Scholar 

Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in Streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101(3):757–770. https://doi.org/10.1111/j.1471-4159.2006.04368.x

Article  CAS  PubMed  Google Scholar 

Biswas J, Gupta S, Verma DK, Gupta P, Singh A, Tiwari S, Goswami P, Sharma S, Singh S (2018) Involvement of glucose related energy crisis and endoplasmic reticulum stress: insinuation of streptozotocin induced Alzheimer’s like pathology. Cell Signal 42:211–226. https://doi.org/10.1016/j.cellsig.2017.10.018

Article 

Comments (0)

No login
gif