Kerr KG, Snelling AM. Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect. 2009;73(4):338–44.
Article CAS PubMed Google Scholar
Robertson DM, Cavanagh HD. The Clinical and Cellular basis of contact Lens-related corneal infections: a review. Clin Ophthalmol. 2008;2(4):907–17.
Article PubMed PubMed Central Google Scholar
Robertson DM, Petroll WM, Jester JV, Cavanagh HD. The role of contact lens type, oxygen transmission, and care-related solutions in mediating epithelial homeostasis and Pseudomonas binding to corneal cells: an overview. Eye Contact Lens. 2007;33(6 Pt 2):394–8. discussion 9-400.
Fleiszig SMJ, Kroken AR, Nieto V, Grosser MR, Wan SJ, Metruccio MME, et al. Contact lens-related corneal infection: intrinsic resistance and its compromise. Prog Retin Eye Res. 2020;76:100804.
Article CAS PubMed Google Scholar
Cavanagh HD, Robertson DM, Petroll WM, Jester JV. Castroviejo Lecture. 2009: 40 years in search of the perfect contact lens. Cornea. 2010;29(10):1075-85.
Robertson DM, Petroll WM, Jester JV, Cavanagh HD. Current concepts: contact lens related Pseudomonas keratitis. Cont Lens Anterior Eye. 2007;30(2):94–107.
Angus AA, Lee AA, Augustin DK, Lee EJ, Evans DJ, Fleiszig SM. Pseudomonas aeruginosa induces membrane blebs in epithelial cells, which are utilized as a niche for intracellular replication and motility. Infect Immun. 2008;76(5):1992–2001.
Article CAS PubMed PubMed Central Google Scholar
Jolly AL, Takawira D, Oke OO, Whiteside SA, Chang SW, Wen ER, et al. Pseudomonas aeruginosa-induced bleb-niche formation in epithelial cells is independent of actinomyosin contraction and enhanced by loss of cystic fibrosis transmembrane-conductance regulator osmoregulatory function. mBio. 2015;6(2):e02533.
Article PubMed PubMed Central Google Scholar
Wei C, Zhu M, Petroll WM, Robertson DM. Pseudomonas aeruginosa infectious keratitis in a high oxygen transmissible rigid contact lens rabbit model. Invest Ophthalmol Vis Sci. 2014;55(9):5890–9.
Article PubMed PubMed Central Google Scholar
Burnham GW, Cavanagh HD, Robertson DM. The impact of cellular debris on Pseudomonas aeruginosa adherence to silicone hydrogel contact lenses and contact lens storage cases. Eye Contact Lens. 2012;38(1):7–15.
Article PubMed PubMed Central Google Scholar
Robertson DM, Parks QM, Young RL, Kret J, Poch KR, Malcolm KC, et al. Disruption of contact lens-associated Pseudomonas aeruginosa biofilms formed in the presence of neutrophils. Invest Ophthalmol Vis Sci. 2011;52(5):2844–50.
Article CAS PubMed PubMed Central Google Scholar
Ayilam Ramachandran R, Lemoff A, Robertson DM. Pseudomonas aeruginosa-Derived Extracellular vesicles modulate corneal inflammation: role in Microbial Keratitis? Infect Immun. 2023;91(4):e0003623.
Davies JC. Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr Respir Rev. 2002;3(2):128–34.
Bhagirath AY, Li Y, Somayajula D, Dadashi M, Badr S, Duan K. Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm Med. 2016;16(1):174.
Article PubMed PubMed Central Google Scholar
Döring G, Flume P, Heijerman H, Elborn JS. Treatment of lung infection in patients with cystic fibrosis: current and future strategies. J Cyst Fibros. 2012;11(6):461–79.
Lund-Palau H, Turnbull AR, Bush A, Bardin E, Cameron L, Soren O, et al. Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches. Expert Rev Respir Med. 2016;10(6):685–97.
Article CAS PubMed Google Scholar
Woith E, Fuhrmann G, Melzig MF. Extracellular vesicles-connecting kingdoms. Int J Mol Sci. 2019;20(22).
Tsatsaronis JA, Franch-Arroyo S, Resch U, Charpentier E. Extracellular vesicle RNA: a Universal Mediator of Microbial Communication? Trends Microbiol. 2018;26(5):401–10.
Article CAS PubMed Google Scholar
Zou C, Zhang Y, Liu H, Wu Y, Zhou X. Extracellular vesicles: recent insights into the Interaction between host and pathogenic Bacteria. Front Immunol. 2022;13:840550.
Article CAS PubMed PubMed Central Google Scholar
Kadurugamuwa JL, Beveridge TJ. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol. 1996;178(10):2767–74.
Article CAS PubMed PubMed Central Google Scholar
Ciofu O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Høiby N. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother. 2000;45(1):9–13.
Article CAS PubMed Google Scholar
Mashburn LM, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature. 2005;437(7057):422–5.
Article CAS PubMed Google Scholar
Ellis TN, Leiman SA, Kuehn MJ. Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components. Infect Immun. 2010;78(9):3822–31.
Article CAS PubMed PubMed Central Google Scholar
Feiring B, Fuglesang J, Oster P, Naess LM, Helland OS, Tilman S, et al. Persisting immune responses indicating long-term protection after booster dose with meningococcal group B outer membrane vesicle vaccine. Clin Vaccine Immunol. 2006;13(7):790–6.
Article CAS PubMed PubMed Central Google Scholar
Metruccio MME, Evans DJ, Gabriel MM, Kadurugamuwa JL, Fleiszig SMJ. Pseudomonas aeruginosa outer membrane vesicles triggered by human mucosal fluid and Lysozyme can Prime host tissue surfaces for bacterial adhesion. Front Microbiol. 2016;7:871.
Article PubMed PubMed Central Google Scholar
Jan AT. Outer membrane vesicles (OMVs) of Gram-negative Bacteria: a perspective update. Front Microbiol. 2017;8.
Armstrong DA, Lee MK, Hazlett HF, Dessaint JA, Mellinger DL, Aridgides DS, et al. Extracellular vesicles from Pseudomonas aeruginosa suppress MHC-Related molecules in Human Lung macrophages. Immunohorizons. 2020;4(8):508–19.
Article CAS PubMed Google Scholar
Bauman SJ, Kuehn MJ. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect. 2006;8(9–10):2400–8.
Article CAS PubMed PubMed Central Google Scholar
Robertson DM, Li L, Fisher S, Pearce VP, Shay JW, Wright WE, et al. Characterization of growth and differentiation in a telomerase-immortalized human corneal epithelial cell line. Invest Ophthalmol Vis Sci. 2005;46(2):470–8.
Vaughan MB, Ramirez RD, Wright WE, Minna JD, Shay JW. A three-dimensional model of differentiation of immortalized human bronchial epithelial cells. Differentiation. 2006;74(4):141–8.
Article CAS PubMed Google Scholar
Vucetic A, Lafleur A, Côté M, Kobasa D, Chan M, Alvarez F et al. Extracellular vesicle storm during the course of Ebola virus infection in primates. Front Cell Infect Microbiol. 2023;13.
Giri PK, Kruh NA, Dobos KM, Schorey JS. Proteomic analysis identifies highly antigenic proteins in exosomes from M. tuberculosisinfected and culture filtrate protein-treated macrophages. Proteomics. 2010;10(17):3190–202.
Article CAS PubMed PubMed Central Google Scholar
Webber J, Clayton A. How pure are your vesicles? J Extracell Vesicles. 2013;2. https://doi.org/10.3402/jev.v2i0.19861
Balakrishnan R, Harris MA, Huntley R, Van Auken K, Cherry JM. A guide to best practices for Gene Ontology (GO) manual annotation. Database (Oxford). 2013;2013:bat054.
Comments (0)