Bronstein A, Brandt T. Clinical disorders of balance. posture and gait: CRC; 2004.
Pavol MJ, Owings TM, Foley KT, Grabiner MD. Gait characteristics as risk factors for falling from trips induced in older adults. Journals Gerontol Ser A: Biomedical Sci Med Sci. 1999;54(11):M583–90.
Davids J, Perry J, Slac T. Gait analysis: normal and pathological function. J Pediatr Orthop. 1992;12(6):815.
Begg R, Best R, Dell’Oro L, Taylor S. Minimum foot clearance during walking: strategies for the minimisation of trip-related falls. Gait Posture. 2007;25(2):191–8.
Nagano H, Begg RK, Sparrow WA, Taylor S. Ageing and limb dominance effects on foot-ground clearance during treadmill and overground walking. Clin Biomech Elsevier Ltd. 2011;26(9):962–8.
Winter DA. Foot trajectory in human gait: a precise and multifactorial motor control task. Phys Ther. 1992;72(1):45–53.
Article CAS PubMed Google Scholar
Begg R, Sparrow W. Ageing effects on knee and ankle joint angles at key events and phases of the gait cycle. J Med Eng Technol. 2006;30(6):382–9.
Article CAS PubMed Google Scholar
Moosabhoy MA, Gard SA. Methodology for determining the sensitivity of swing leg toe clearance and leg length to swing leg joint angles during gait. Gait Posture. 2006;24(4):493–501.
Adiputra D, Nazmi N, Bahiuddin I, Ubaidillah U, Imaduddin F, Abdul Rahman MA, et al. editors. A review on the control of the mechanical properties of ankle foot orthosis for gait assistance. Actuators: MDPI; 2019.
Chen B, Zi B, Zeng Y, Qin L, Liao W-H. Ankle-foot orthoses for rehabilitation and reducing metabolic cost of walking: possibilities and challenges. Mechatronics. 2018;53:241–50.
Shorter KA, Xia J, Hsiao-Wecksler ET, Durfee WK, Kogler GF. Technologies for powered ankle-foot orthotic systems: possibilities and challenges. IEEE/ASME Trans Mechatron. 2011;18(1):337–47.
Takaiwa M, Noritsugu T, editors. Development of pneumatic walking support shoes using potential energy of human. Proceedings of the JFPS International Symposium on Fluid Power; 2008: The Japan Fluid Power System Society.
Perry J, Bleck E. Gait analysis: normal and pathological function. Dev Med Child Neurol. 1993;35:1122.
Boes MK. Evaluation of a pneumatic ankle-foot orthosis: portability and functionality. University of Illinois at Urbana-Champaign; 2016.
Li Y. On improving control and efficiency of a portable pneumatically powered ankle-foot orthosis. University of Illinois at Urbana-Champaign; 2013.
Petrucci MN. Evaluation of gait kinematics and kinetics using a powered ankle-foot orthosis for gait assistance in people with multiple sclerosis. University of Illinois at Urbana-Champaign; 2016.
Kao P-C, Ferris DP. Motor adaptation during dorsiflexion-assisted walking with a powered orthosis. Gait Posture. 2009;29(2):230–6.
Sawicki GS, Ferris DP. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J Neuroeng Rehabil. 2009;6(1):1–16.
Gottschall JS, Kram R. Energy cost and muscular activity required for propulsion during walking. J Appl Physiol. 2003;94(5):1766–72.
Griffin TM, Roberts TJ, Kram R. Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments. J Appl Physiol. 2003;95(1):172–83.
Doke J, Donelan JM, Kuo AD. Mechanics and energetics of swinging the human leg. J Exp Biol. 2005;208(3):439–45.
Gordon D, Robertson E, Winter DA. Mechanical energy generation, absorption and transfer amongst segments during walking. J Biomech. 1980;13(10):845–54.
Kuo AD. Energetics of actively powered locomotion using the simplest walking model. J Biomech Eng. 2002;124(1):113–20.
Winter DA. Biomechanics and motor control of human movement. Wiley; 2009.
Whittle MW. Gait analysis: an introduction. Butterworth-Heinemann; 2014.
Wall J, Charteris J, Turnbull G. Two steps equals one stride equals what? The applicability of normal gait nomenclature to abnormal walking patterns. Clin Biomech Elsevier Ltd. 1987;2(3):119–25.
Donelan JM, Kram R, Kuo AD. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. J Exp Biol. 2002;205(23):3717–27.
Trinler U, Hollands K, Jones R, Baker R. A systematic review of approaches to modelling lower limb muscle forces during gait: applicability to clinical gait analyses. Gait Posture. 2018;61:353–61.
Bharadwaj K, Sugar TG, editors. Kinematics of a robotic gait trainer for stroke rehabilitation. Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006 ICRA 2006; 2006: IEEE.
Bogey R, Gitter AJ, Barnes L. Determination of ankle muscle power in normal gait using an EMG-to-force processing approach. J Electromyogr Kinesiol. 2010;20(1):46–54.
Article CAS PubMed Google Scholar
Clark CC, Barnes CM, Holton M, Summers HD, Stratton G. A kinematic analysis of fundamental movement skills. Sport Sci Rev. 2016;25(3–4):261.
Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, et al. European recommendations for surface electromyography. Roessingh Res Dev. 1999;8(2):13–54.
Begg R, Galea MP, James L, Sparrow WA, Levinger P, Khan F, et al. Real-time foot clearance biofeedback to assist gait rehabilitation following stroke: a randomized controlled trial protocol. Trials. 2019;20(1):1–7.
Tirosh O, Cambell A, Begg RK, Sparrow WA. Biofeedback training effects on minimum toe clearance variability during treadmill walking. Ann Biomed Eng. 2013;41:1661–9.
Loverro KL, Mueske NM, Hamel KA. Location of minimum foot clearance on the shoe and with respect to the obstacle changes with locomotor task. J Biomech. 2013;46(11):1842–50.
Article PubMed PubMed Central Google Scholar
Begg RK, Sparrow WA. Gait characteristics of young and older individuals negotiating a raised surface: implications for the prevention of falls. Journals Gerontol Ser A: Biol Sci Med Sci. 2000;55(3):M147–54.
Chen H-L, Lu T-W, Wang T-M, Huang S-C. Biomechanical strategies for successful obstacle crossing with the trailing limb in older adults with medial compartment knee osteoarthritis. J Biomech. 2008;41(4):753–61.
Carbone V, Fluit R, Pellikaan P, Van Der Krogt M, Janssen D, Damsgaard M, et al. TLEM 2.0–A comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity. J Biomech. 2015;48(5):734–41.
Article CAS PubMed Google Scholar
Andersen MS, Damsgaard M, MacWilliams B, Rasmussen J. A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems. Comput Methods Biomech BioMed Eng. 2010;13(2):171–83.
Andersen MS, Damsgaard M, Rasmussen J. Kinematic analysis of over-determinate biomechanical systems. Comput Methods Biomech BioMed Eng. 2009;12(4):371–84.
Zajac FE. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 1989;17(4):359–411.
Rasmussen J, Damsgaard M, Voigt M. Muscle recruitment by the min/max criterion—a comparative numerical study. J Biomech. 2001;34(3):409–15.
Article CAS PubMed Google Scholar
Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE. Statistical parametric mapping: the analysis of functional brain images. Elsevier; 2011.
Arnold AS, Schwartz MH, Thelen DG, Delp SL. Contributions of muscles to terminal-swing knee motions vary with walking speed. J Biomech. 2007;40(16):3660–71.
Article PubMed PubMed Central Google Scholar
Barrett RS, Besier TF, Lloyd DG. Individual muscle contributions to the swing phase of gait: an EMG-based forward dynamics modelling approach. Simul Model Pract Theory. 2007;15(9):1146–55.
Comments (0)