Dual-energy CT in musculoskeletal imaging: technical considerations and clinical applications

Hounsfield GN (1973) Computerized transverse axial scanning (tomography): I. Description of system. Br J Radiol. https://doi.org/10.1259/0007-1285-46-552-1016

Article  PubMed  Google Scholar 

Alvarez RE, MacOvski A (1976) Energy-selective reconstructions in X-ray computerised tomography. Phys Med Biol. https://doi.org/10.1088/0031-9155/21/5/002

Article  PubMed  Google Scholar 

Macovski A, Alvarez RE, Chan JLH et al (1976) Energy dependent reconstruction in X-ray computerized tomography. Comput Biol Med. https://doi.org/10.1016/0010-4825(76)90069-X

Article  PubMed  Google Scholar 

Zhang W, Liu J, Jin W et al (2023) Radiomics from dual-energy CT-derived iodine maps predict lymph node metastasis in head and neck squamous cell carcinoma. Radiol Med. https://doi.org/10.1007/s11547-023-01750-2

Article  PubMed  PubMed Central  Google Scholar 

Hu X, Shi S, Wang Y et al (2023) Dual-energy CT improves differentiation of non-hypervascular pancreatic neuroendocrine neoplasms from CA 19–9-negative pancreatic ductal adenocarcinomas. Radiol Med. https://doi.org/10.1007/s11547-023-01733-3

Article  PubMed  Google Scholar 

Yang L, Sun J, Li J, Peng Y (2022) Dual-energy spectral CT imaging of pulmonary embolism with Mycoplasma pneumoniae pneumonia in children. Radiol Med 127:154–161. https://doi.org/10.1007/s11547-021-01442-9

Article  PubMed  Google Scholar 

De Cecco CN, Darnell A, Rengo M, et al (2012) Dual-energy CT: oncologic applications. AJR Am J Roentgenol 199

Wei X, Cao R, Li H et al (2022) Dual-energy CT iodine map in predicting the efficacy of neoadjuvant chemotherapy for hypopharyngeal carcinoma: a preliminary study. Sci Rep. https://doi.org/10.1038/s41598-022-25828-5

Article  PubMed  PubMed Central  Google Scholar 

Fulwadhva UP, Wortman JR, Sodickson AD (2016) Use of dual-energy CT and iodine maps in evaluation of bowel disease. Radiographics. https://doi.org/10.1148/rg.2016150151

Article  PubMed  Google Scholar 

Alizzi Z, Gogbashian A, Karteris E, Hall M (2023) Development of a dual energy CT based model to assess response to treatment in patients with high grade serous ovarian cancer: a pilot cohort study. Cancer Imaging. https://doi.org/10.1186/s40644-023-00579-2

Article  PubMed  PubMed Central  Google Scholar 

Martin SS, Wichmann JL, Pfeifer S et al (2017) Impact of noise-optimized virtual monoenergetic dual-energy computed tomography on image quality in patients with renal cell carcinoma. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2017.10.008

Article  PubMed  Google Scholar 

Lenga L, Lange M, Arendt CT et al (2020) Measurement reliability and diagnostic accuracy of virtual monoenergetic dual-energy CT in patients with colorectal liver metastases. Acad Radiol. https://doi.org/10.1016/j.acra.2019.09.020

Article  PubMed  Google Scholar 

Wang R, Yu W, Wang Y et al (2011) Incremental value of dual-energy CT to coronary CT angiography for the detection of significant coronary stenosis: comparison with quantitative coronary angiography and single photon emission computed tomography. Int J Cardiovasc Imaging. https://doi.org/10.1007/s10554-011-9881-7

Article  PubMed  Google Scholar 

Jin KN, De Cecco CN, Caruso D et al (2016) Myocardial perfusion imaging with dual energy CT. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2016.06.023

Article  PubMed  PubMed Central  Google Scholar 

Wichmann JL, Bauer RW, Doss M et al (2013) Diagnostic accuracy of late iodine-enhancement dual-energy computed tomography for the detection of chronic myocardial infarction compared with late gadolinium-enhancement 3-T magnetic resonance imaging. Invest Radiol. https://doi.org/10.1097/RLI.0b013e31829d91a8

Article  PubMed  Google Scholar 

D’Angelo T, Lanzafame LRM, Micari A et al (2023) Improved coronary artery visualization using virtual monoenergetic imaging from dual-layer spectral detector CT angiography. Diagnostics. https://doi.org/10.3390/diagnostics13162675

Article  PubMed  PubMed Central  Google Scholar 

GhasemiShayan R, Oladghaffari M, Sajjadian F, FazelGhaziyani M (2020) Image quality and dose comparison of single-energy CT (SECT) and dual-energy CT (DECT). Radiol Res Pract. https://doi.org/10.1155/2020/1403957

Article  Google Scholar 

Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24:1679

Article  PubMed  Google Scholar 

Mallinson PI, Coupal TM, McLaughlin PD et al (2016) Dual-energy CT for the musculoskeletal system. Radiology. https://doi.org/10.1148/radiol.2016151109

Article  PubMed  Google Scholar 

D’Angelo T, Caudo D, Blandino A, et al (2022) Artificial intelligence, machine learning and deep learning in musculoskeletal imaging: current applications. J Clin Ultrasound 50

Faby S, Kuchenbecker S, Sawall S et al (2015) Performance of today’s dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: a simulation study. Med Phys. DOI 10(1118/1):4922654

Google Scholar 

Borges AP, Antunes C, Curvo-Semedo L (2023) Pros and cons of dual-energy CT systems: “one does not fit all.” Tomography 9:195–216

Article  PubMed  PubMed Central  Google Scholar 

Topçuoğlu OM, Sarıkaya B (2019) Fast kilovoltage-switching dual-energy CT offering lower x-ray dose than single-energy CT for the chest: a quantitative and qualitative comparison study of the two methods of acquisition. Diagn Interv Radiol. https://doi.org/10.5152/dir.2019.18412

Article  PubMed  PubMed Central  Google Scholar 

Johnson TRC (2012) Dual-energy CT: general principles. AJR Am J Roentgenol. https://doi.org/10.2214/ajr.12.9116

Article  PubMed  PubMed Central  Google Scholar 

Rajiah P, Halliburton S (2015) Technical aspects of DECT with dual layer detectors. In: Dual-energy CT in cardiovascular imaging

McCollough CH, Rajendran K, Leng S et al (2023) The technical development of photon-counting detector CT. Eur Radiol 33:5321–5330

Article  PubMed  Google Scholar 

Trabzonlu TA, Mozaffary A, Kim D, Yaghmai V (2020) Dual-energy CT evaluation of gastrointestinal bleeding. Abdom Radiol 45:1–45

Article  Google Scholar 

Patel BN, Vernuccio F, Meyer M et al (2019) Dual-energy CT material density iodine quantification for distinguishing vascular from nonvascular renal lesions: normalization reduces intermanufacturer threshold variability. Am J Roentgenol. https://doi.org/10.2214/AJR.18.20115

Article  Google Scholar 

D’Angelo T, Cicero G, Mazziotti S et al (2019) Dual energy computed tomography virtual monoenergetic imaging: technique and clinical applications. Br J Radiol 92:20180546

Article  PubMed  PubMed Central  Google Scholar 

Parakh A, An C, Lennartz S et al (2021) Recognizing and minimizing artifacts at dual-energy CT. Radiographics 41:509–523. https://doi.org/10.1148/rg.2021200049

Article  PubMed  Google Scholar 

Albano D, Messina C, Zagra L et al (2021) Failed total hip arthroplasty: diagnostic performance of conventional MRI features and locoregional lymphadenopathy to identify infected implants. J Magn Reson Imaging 53:201–210. https://doi.org/10.1002/jmri.27314

Article  PubMed  Google Scholar 

Albano D, Messina C, Sconfienza LM (2021) MRI to diagnose total hip arthroplasty infection: steps toward an accurate diagnosis. Radiology 299:E283

Article  PubMed  Google Scholar 

Wellenberg RHH, Hakvoort ET, Slump CH et al (2018) Metal artifact reduction techniques in musculoskeletal CT-imaging. Eur J Radiol 107:60–69

Article  CAS  PubMed  Google Scholar 

Nicolaou S, Liang T, Murphy DT et al (2012) Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR Am J Roentgenol. https://doi.org/10.2214/ajr.12.9117

Article  PubMed  Google Scholar 

Conti D, Baruffaldi F, Erani P et al (2023) Dual-energy computed tomography applications to reduce metal artifacts in hip prostheses: a phantom study. Diagnostics. https://doi.org/10.3390/diagnostics13010050

Article  PubMed  PubMed Central  Google Scholar 

Lee KYG, Cheng HMJ, Chu CY et al (2019) Metal artifact reduction by monoenergetic extrapolation of dual-energy CT in patients with metallic implants. J Orthop Surg. https://doi.org/10.1177/2309499019851176

Article  Google Scholar 

Kohyama S, Yoshii Y, Okamoto Y, Nakajima T (2022) Advances in bone joint imaging-metal artifact reduction. Diagnostics 12

Donders JCE, Wellenberg RHH, Streekstra GJ et al (2020) Improved diagnostic confidence in evaluating bone non-union using virtual monochromatic dual-energy CT. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2020.109159

Article  PubMed  Google Scholar 

Barreto I, Pepin E, Davis I et al (2020) Comparison of metal artifact reduction using single-energy CT and dual-energy CT with various metallic implants in cadavers. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2020.109357

Article  PubMed  Google Scholar 

Spermon J, Van Dijke CF (2013) Dual energy CT: added value in gouty arthritis. JBR-BTR. https://doi.org/10.5334/jbr-btr.179

Article  PubMed  Google Scholar 

Girish G, Melville DM, Kaeley GS et al (2013) Imaging appearances in gout. Arthritis. https://doi.org/10.1155/2013/673401

Article  PubMed  PubMed Central  Google Scholar 

Mallinson PI, Reagan AC, Coupal T, et al (2014) The distribution of urate deposition within the extremities in gout: A review of 148 dual-energy CT cases. Skeletal Radiol 43

Bongartz T, Glazebrook KN, Kavros SJ et al (2015) Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2013-205095

Article 

Comments (0)

No login
gif