Multi-omics staging of locally advanced rectal cancer predicts treatment response: a pilot study

Araghi M, Soerjomataram I, Jenkins M, Brierley J, Morris E, Bray F, Arnold M (2019) Global trends in colorectal cancer mortality: projections to the year 2035. Int J Cancer 144(12):2992–3000. https://doi.org/10.1002/ijc.32055

Article  CAS  PubMed  Google Scholar 

Habr-Gama A, Perez RO, Nadalin W, Sabbaga J, Ribeiro U Jr, Silva e Sousa AH Jr, Campos FG, Kiss DR, Gama-Rodrigues J (2004) Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg 240(4):711–717. https://doi.org/10.1097/01.sla.0000141194.27992.32. (discussion 717–718)

Article  PubMed  PubMed Central  Google Scholar 

van der Valk MJM, Hilling DE, Bastiaannet E, Meershoek-Klein Kranenbarg E, Beets GL, Figueiredo NL, Habr-Gama A, Perez RO, Renehan AG, van de Velde CJH, Consortium I (2018) Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study. Lancet 391(10139):2537–2545. https://doi.org/10.1016/S0140-6736(18)31078-X

Article  PubMed  Google Scholar 

Beets-Tan RGH, Lambregts DMJ, Maas M, Bipat S, Barbaro B, Curvo-Semedo L, Fenlon HM, Gollub MJ, Gourtsoyianni S, Halligan S, Hoeffel C, Kim SH, Laghi A, Maier A, Rafaelsen SR, Stoker J, Taylor SA, Torkzad MR, Blomqvist L (2018) Magnetic resonance imaging for clinical management of rectal cancer: updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol 28(4):1465–1475. https://doi.org/10.1007/s00330-017-5026-2

Article  PubMed  Google Scholar 

Jayaprakasam VS, Alvarez J, Omer DM, Gollub MJ, Smith JJ, Petkovska I (2023) Watch-and-wait approach to rectal cancer: the role of imaging. Radiology. https://doi.org/10.1148/radiol.221529

Article  PubMed  Google Scholar 

Delli Pizzi A, Basilico R, Cianci R, Seccia B, Timpani M, Tavoletta A, Caposiena D, Faricelli B, Gabrielli D, Caulo M (2018) Rectal cancer MRI: protocols, signs and future perspectives radiologists should consider in everyday clinical practice. Insights Imaging 9(4):405–412. https://doi.org/10.1007/s13244-018-0606-5

Article  PubMed  PubMed Central  Google Scholar 

El Khababi N, Beets-Tan RGH, Tissier R, Lahaye MJ, Maas M, Curvo-Semedo L, Dresen RC, Nougaret S, Beets GL, Lambregts DMJ (2022) Comparison of MRI response evaluation methods in rectal cancer: a multicentre and multireader validation study. Eur Radiol. https://doi.org/10.1007/s00330-022-09342-w

Article  PubMed  Google Scholar 

Diez-Villanueva A, Sanz-Pamplona R, Sole X, Cordero D, Crous-Bou M, Guino E, Lopez-Doriga A, Berenguer A, Ausso S, Pare-Brunet L, Obon-Santacana M, Moratalla-Navarro F, Salazar R, Sanjuan X, Santos C, Biondo S, Diez-Obrero V, Garcia-Serrano A, Alonso MH, Carreras-Torres R, Closa A, Moreno V (2022) COLONOMICS—integrative omics data of one hundred paired normal-tumoral samples from colon cancer patients. Sci Data 9(1):595. https://doi.org/10.1038/s41597-022-01697-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernandez-Rozadilla C, Timofeeva M, Chen Z, Law P, Thomas M, Schmit S, Diez-Obrero V, Hsu L, Fernandez-Tajes J, Palles C, Sherwood K, Briggs S, Svinti V, Donnelly K, Farrington S, Blackmur J, Vaughan-Shaw P, Shu XO, Long J, Cai Q, Guo X, Lu Y, Broderick P, Studd J, Huyghe J, Harrison T, Conti D, Dampier C, Devall M, Schumacher F, Melas M, Rennert G, Obon-Santacana M, Martin-Sanchez V, Moratalla-Navarro F, Oh JH, Kim J, Jee SH, Jung KJ, Kweon SS, Shin MH, Shin A, Ahn YO, Kim DH, Oze I, Wen W, Matsuo K, Matsuda K, Tanikawa C, Ren Z, Gao YT, Jia WH, Hopper J, Jenkins M, Win AK, Pai R, Figueiredo J, Haile R, Gallinger S, Woods M, Newcomb P, Duggan D, Cheadle J, Kaplan R, Maughan T, Kerr R, Kerr D, Kirac I, Bohm J, Mecklin LP, Jousilahti P, Knekt P, Aaltonen L, Rissanen H, Pukkala E, Eriksson J, Cajuso T, Hanninen U, Kondelin J, Palin K, Tanskanen T, Renkonen-Sinisalo L, Zanke B, Mannisto S, Albanes D, Weinstein S, Ruiz-Narvaez E, Palmer J, Buchanan D, Platz E, Visvanathan K, Ulrich C, Siegel E, Brezina S, Gsur A, Campbell P, Chang-Claude J, Hoffmeister M, Brenner H, Slattery M, Potter J, Tsilidis K, Schulze M, Gunter M, Murphy N, Castells A, Castellvi-Bel S, Moreira L, Arndt V, Shcherbina A, Stern M, Pardamean B, Bishop T, Giles G, Southey M, Idos G, McDonnell K, Abu-Ful Z, Greenson J, Shulman K, Lejbkowicz F, Offit K, Su YR, Steinfelder R, Keku T, van Guelpen B, Hudson T, Hampel H, Pearlman R, Berndt S, Hayes R, Martinez ME, Thomas S, Corley D, Pharoah P, Larsson S, Yen Y, Lenz HJ, White E, Li L, Doheny K, Pugh E, Shelford T, Chan A, Cruz-Correa M, Lindblom A, Hunter D, Joshi A, Schafmayer C, Scacheri P, Kundaje A, Nickerson D, Schoen R, Hampe J, Stadler Z, Vodicka P, Vodickova L, Vymetalkova V, Papadopoulos N, Edlund C, Gauderman W, Thomas D, Shibata D, Toland A, Markowitz S, Kim A, Chanock S, van Duijnhoven F, Feskens E, Sakoda L, Gago-Dominguez M, Wolk A, Naccarati A, Pardini B, FitzGerald L, Lee SC, Ogino S, Bien S, Kooperberg C, Li C, Lin Y, Prentice R, Qu C, Bezieau S, Tangen C, Mardis E, Yamaji T, Sawada N, Iwasaki M, Haiman C, Le Marchand L, Wu A, Qu C, McNeil C, Coetzee G, Hayward C, Deary I, Harris S, Theodoratou E, Reid S, Walker M, Ooi LY, Moreno V, Casey G, Gruber S, Tomlinson I, Zheng W, Dunlop M, Houlston R, Peters U (2023) Deciphering colorectal cancer genetics through multi-omic analysis of 100,204 cases and 154,587 controls of European and east Asian ancestries. Nat Genet 55(1):89–99. https://doi.org/10.1038/s41588-022-01222-9

Article  CAS  PubMed  Google Scholar 

Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577. https://doi.org/10.1148/radiol.2015151169

Article  PubMed  Google Scholar 

Kaushik AK, De Berardinis RJ (2018) Applications of metabolomics to study cancer metabolism. Bba-Rev Cancer 1870(1):2–14. https://doi.org/10.1016/j.bbcan.2018.04.009

Article  CAS  Google Scholar 

Pieragostino D, Agnifili L, Fasanella V, D’Aguanno S, Mastropasqua R, Di Ilio C, Sacchetta P, Urbani A, Del Boccio P (2013) Shotgun proteomics reveals specific modulated protein patterns in tears of patients with primary open angle glaucoma naive to therapy. Mol Biosyst 9(6):1108–1116. https://doi.org/10.1039/c3mb25463a

Article  CAS  PubMed  Google Scholar 

Kramer O (2013) K-Nearest Neighbors. In: Dimensionality reduction with unsupervised nearest neighbors. Intelligent Systems Reference Library. pp 13–23. doi:https://doi.org/10.1007/978-3-642-38652-7_2

Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, Ganeshan B, Miles KA, Cook GJ, Goh V (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3(6):573–589. https://doi.org/10.1007/s13244-012-0196-6

Article  PubMed  PubMed Central  Google Scholar 

Delli Pizzi A, Chiarelli AM, Chiacchiaretta P, d’Annibale M, Croce P, Rosa C, Mastrodicasa D, Trebeschi S, Lambregts DMJ, Caposiena D, Serafini FL, Basilico R, Cocco G, Di Sebastiano P, Cinalli S, Ferretti A, Wise RG, Genovesi D, Beets-Tan RGH, Caulo M (2021) MRI-based clinical-radiomics model predicts tumor response before treatment in locally advanced rectal cancer. Sci Rep 11(1):5379. https://doi.org/10.1038/s41598-021-84816-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horvat N, Veeraraghavan H, Khan M, Blazic I, Zheng J, Capanu M, Sala E, Garcia-Aguilar J, Gollub MJ, Petkovska I (2018) MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy. Radiology 287(3):833–843. https://doi.org/10.1148/radiol.2018172300

Article  PubMed  Google Scholar 

Li C, Yin J (2021) Radiomics based on T2-weighted imaging and apparent diffusion coefficient images for preoperative evaluation of lymph node metastasis in rectal cancer patients. Front Oncol 11:671354. https://doi.org/10.3389/fonc.2021.671354

Article  PubMed  PubMed Central  Google Scholar 

Ma X, Shen F, Jia Y, Xia Y, Li Q, Lu J (2019) MRI-based radiomics of rectal cancer: preoperative assessment of the pathological features. BMC Med Imaging 19(1):86. https://doi.org/10.1186/s12880-019-0392-7

Article  PubMed  PubMed Central  Google Scholar 

Brown DG, Rao S, Weir TL, O’Malia J, Bazan M, Brown RJ, Ryan EP (2016) Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab 4:11. https://doi.org/10.1186/s40170-016-0151-y

Article  PubMed  PubMed Central  Google Scholar 

Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, Watanabe H, Masuda K, Nishimoto Y, Kubo M, Hosoda F, Rokutan H, Matsumoto M, Takamaru H, Yamada M, Matsuda T, Iwasaki M, Yamaji T, Yachida T, Soga T, Kurokawa K, Toyoda A, Ogura Y, Hayashi T, Hatakeyama M, Nakagama H, Saito Y, Fukuda S, Shibata T, Yamada T (2019) Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med 25(6):968–976. https://doi.org/10.1038/s41591-019-0458-7

Article  CAS  PubMed  Google Scholar 

Chauvin A, Boisvert FM (2018) Clinical proteomics in colorectal cancer, a promising tool for improving personalised medicine. Proteomes. https://doi.org/10.3390/proteomes6040049

Article  PubMed  PubMed Central  Google Scholar 

Del Boccio P, Perrotti F, Rossi C, Cicalini I, Di Santo S, Zucchelli M, Sacchetta P, Genovesi D, Pieragostino D (2017) Serum lipidomic study reveals potential early biomarkers for predicting response to chemoradiation therapy in advanced rectal cancer: a pilot study. Adv Radiat Oncol 2(2):118–124. https://doi.org/10.1016/j.adro.2016.12.005

Article  PubMed  PubMed Central  Google Scholar 

Fernandes Messias MC, Mecatti GC, Figueiredo Angolini CF, Eberlin MN, Credidio L, Real Martinez CA, Rodrigues Coy CS, de Oliveira CP (2017) Plasma lipidomic signature of rectal adenocarcinoma reveals potential biomarkers. Front Oncol 7:325. https://doi.org/10.3389/fonc.2017.00325

Article  PubMed  Google Scholar 

Patterson NH, Alabdulkarim B, Lazaris A, Thomas A, Marcinkiewicz MM, Gao ZH, Vermeulen PB, Chaurand P, Metrakos P (2016) Assessment of pathological response to therapy using lipid mass spectrometry imaging. Sci Rep 6:36814. https://doi.org/10.1038/srep36814

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Ji D, Tian H, Gao Z, Song C, Jia J, Cui X, Zhong L, Shen J, Gu J (2022) Predictive value of proteomic markers for advanced rectal cancer with neoadjuvant chemoradiotherapy. BMC Cancer 22(1):868. https://doi.org/10.1186/s12885-022-09960-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delli Pizzi A, Caposiena D, Mastrodicasa D, Trebeschi S, Lambregts D, Rosa C, Cianci R, Seccia B, Sessa B, Di Flamminio FM, Chiacchiaretta P, Caravatta L, Cinalli S, Di Sebastiano P, Caulo M, Genovesi D, Beets-Tan R, Basilico R (2019) Tumor detectability and conspicuity comparison of standard b1000 and ultrahigh b2000 diffusion-weighted imaging in rectal cancer. Abdom Radiol (NY) 44(11):3595–3605. https://doi.org/10.1007/s00261-019-02177-y

Article  PubMed  Google Scholar 

Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173. https://doi.org/10.1006/cbmr.1996.0014

Article  CAS  PubMed  Google Scholar 

van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts H (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

Comments (0)

No login
gif