Tollefson MK, Karnes RJ, Rangel LJ, Bergstralh EJ, Boorjian SA (2013) The impact of clinical stage on prostate cancer survival following radical prostatectomy. J Urol 189:1707–1712. https://doi.org/10.1016/j.juro.2012.11.065
Mikel Hubanks J, Boorjian SA, Frank I, Gettman MT, Houston Thompson R, Rangel LJ et al (2014) The presence of extracapsular extension is associated with an increased risk of death from prostate cancer after radical prostatectomy for patients with seminal vesicle invasion and negative lymph nodes. Urol Oncol 32(26):e1-7. https://doi.org/10.1016/j.urolonc.2012.09.002
Ohori M, Kattan MW, Koh H, Maru N, Slawin KM, Shariat S et al (2004) Predicting the presence and side of extracapsular extension: a nomogram for staging prostate cancer. J Urol 171:1844–1849. https://doi.org/10.1097/01.ju.0000121693.05077.3d
Eifler JB, Feng Z, Lin BM, Partin MT, Humphreys EB, Han M et al (2013) An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int 111:22–29. https://doi.org/10.1111/j.1464-410X.2012.11324.x
Rayn KN, Bloom JB, Gold SA, Hale GR, Baiocco JA, Mehralivand S et al (2018) Added value of multiparametric magnetic resonance imaging to clinical nomograms in predicting adverse pathology in prostate cancer. J Urol. https://doi.org/10.1016/j.juro.2018.05.094
Article PubMed PubMed Central Google Scholar
Turkbey B, Brown AM, Sankineni S, Wood BJ, Pinto PA, Choyke PL (2016) Multiparametric prostate magnetic resonance imaging in the evaluation of prostate cancer. CA Cancer J Clin 66:326–336. https://doi.org/10.3322/caac.21333
Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757. https://doi.org/10.1007/s00330-011-2377-y
Article PubMed PubMed Central Google Scholar
Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ et al (2016) PI-RADS prostate imaging–reporting and data system: 2015, version 2. Eur Urol 69:16–40
Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, Reporting PI, Version DS et al (2019) Update of prostate imaging reporting and data system version 2. Eur Urol 2019(76):340–351. https://doi.org/10.1016/j.eururo.2019.02.033
Li W, Dong A, Hong G, Shang W, Shen X (2021) Diagnostic performance of ESUR scoring system for extraprostatic prostate cancer extension: a meta-analysis. Eur J Radiol 143:109896. https://doi.org/10.1016/j.ejrad.2021.109896
Li W, Shang W, Feng L, Sun Y, Tian J, Yiman W, Dong A (2022) Diagnostic performance of extraprostatic extension grading system for detection of extraprostatic extension in prostate cancer: a diagnostic systematic review and meta-analysis. Front Oncol. https://doi.org/10.3389/fonc.2021.792120
Article PubMed PubMed Central Google Scholar
Mehralivand S, Shih JH, Harmon S, Smith C, Bloom J, Czarniecki M et al (2019) A Grading system for the assessment of risk of extraprostatic extension of prostate cancer at multiparametric MRI. Radiology 290:709–719. https://doi.org/10.1148/radiol.2018181278
Calimano-Ramirez LF, Virarkar MK, Hernandez M, Ozdemir S, Kumar S, Gopireddy DR et al (2023) MRI-based nomograms and radiomics in presurgical prediction of extraprostatic extension in prostate cancer: a systematic review. Abdom Radiol 48:2379–2400. https://doi.org/10.1007/s00261-023-03924-y
Chiacchio G, Castellani D, Nedbal C, De Stefano V, Brocca C, Tramanzoli P, Galosi AB, Donalisio R, da Silva J, Teoh Y-C, Tiong HY, Naik N, Somani BK, Merseburger AS, Gauhar V (2023) Radiomics vs radiologist in prostate cancer. Results from a systematic review. World J Urol 41(3):709–724. https://doi.org/10.1007/s00345-023-04305-2
Cutaia G, La Tona G, Comelli A, Vernuccio F, Agnello F, Gagliardo C et al (2021) Radiomics and prostate MRI: current role and future applications. J Imaging 7:34. https://doi.org/10.3390/jimaging7020034
Article PubMed PubMed Central Google Scholar
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. Epidemiol Biostat Public Health 6:e1-34
Whiting PF (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529. https://doi.org/10.7326/0003-4819-155-8-201110180-00009
Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762. https://doi.org/10.1038/nrclinonc.2017.141
Rutter CM, Gatsonis CA (2001) A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Stat Med 20:2865–2884
Article CAS PubMed Google Scholar
Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:889–893
Bai H, Xia W, Ji X, He D, Zhao X, Bao J, Zhou J, Wei X, Huang Y, Li Q, Gao X (2021) Multiparametric magnetic resonance imaging‐based peritumoral radiomics for preoperative prediction of the presence of extracapsular extension with prostate cancer. J Magn Reson Imaging 54(4):1222–1230. https://doi.org/10.1002/jmri.27678
Cuocolo R, Stanzione A, Faletti R, Gatti M, Calleris G, Fornari A et al (2021) MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: a multicenter study. Eur Radiol. https://doi.org/10.1007/s00330-021-07856-3
Article PubMed PubMed Central Google Scholar
Damascelli A, Gallivanone F, Cristel G, Cava C, Interlenghi M, Esposito A et al (2021) Advanced imaging analysis in prostate MRI: building a radiomic signature to predict tumor aggressiveness. Diagn Basel Switz 11:594. https://doi.org/10.3390/diagnostics11040594
Fan X, Xie N, Chen J, Li T, Cao R, Yu H et al (2022) Multiparametric MRI and machine learning based radiomic models for preoperative prediction of multiple biological characteristics in prostate cancer. Front Oncol 12:839621. https://doi.org/10.3389/fonc.2022.839621
Article PubMed PubMed Central Google Scholar
He D, Wang X, Fu C, Wei X, Bao J, Ji X et al (2021) MRI-based radiomics models to assess prostate cancer, extracapsular extension and positive surgical margins. Cancer Imaging Off Publ Int Cancer Imaging Soc 21:46. https://doi.org/10.1186/s40644-021-00414-6
Losnegård A, Reisæter LAR, Halvorsen OJ, Jurek J, Assmus J, Arnes JB et al (2020) Magnetic resonance radiomics for prediction of extraprostatic extension in non-favorable intermediate- and high-risk prostate cancer patients. Acta Radiol 61:1570–1579. https://doi.org/10.1177/0284185120905066
Ma S, Xie H, Wang H, Han C, Yang J, Lin Z et al (2019) MRI-based radiomics signature for the preoperative prediction of extracapsular extension of prostate cancer. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26777
Article PubMed PubMed Central Google Scholar
Ma S, Xie H, Wang H, Yang J, Han C, Wang X et al (2020) Preoperative prediction of extracapsular extension: radiomics signature based on magnetic resonance imaging to stage prostate cancer. Mol Imaging Biol 22:711–721. https://doi.org/10.1007/s11307-019-01405-7
Article CAS PubMed Google Scholar
Stanzione A, Cuocolo R, Cocozza S, Romeo V, Persico F, Fusco F et al (2019) Detection of extraprostatic extension of cancer on biparametric MRI combining texture analysis and machine learning: preliminary results. Acad Radiol 26:1338–1344. https://doi.org/10.1016/j.acra.2018.12.025
Xu L, Zhang G, Zhao L, Mao L, Li X, Yan W et al (2020) Radiomics based on multiparametric magnetic resonance imaging to predict extraprostatic extension of prostate cancer. Front Oncol 10:940. https://doi.org/10.3389/fonc.2020.00940
Article PubMed PubMed Central Google Scholar
de Rooij M, Hamoen EHJ, Witjes JA, Barentsz JO, Rovers MM (2016) Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur Urol 70:233–245. https://doi.org/10.1016/j.eururo.2015.07.029
Kao Y-S, Lin K-T (2022) A meta-analysis of the diagnostic test accuracy of CT-based radiomics for the prediction of COVID-19 severity. Radiol Med (Torino) 127:754–762. https://doi.org/10.1007/s11547-022-01510-8
Kozikowski M, Suarez-Ibarrola R, Osiecki R, Bilski K, Gratzke C, Shariat SF et al (2022) Role of radiomics in the prediction of muscle-invasive bladder cancer: a systematic review and meta-analysis. Eur Urol Focus 8:728–738. https://doi.org/10.1016/j.euf.2021.05.005
Li Y, Liu Y, Liang Y, Wei R, Zhang W, Yao W et al (2022) Radiomics can differentiate high-grade glioma from brain metastasis: a systematic review and meta-analysis. Eur Radiol 32:8039–8051. https://doi.org/10.1007/s00330-022-08828-x
Nketiah G, Elschot M, Kim E, Teruel JR, Scheenen TW, Bathen TF et al (2017) T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results. Eur Radiol 27:3050–3059. https://doi.org/10.1007/s00330-016-4663-1
Spohn SKB, Bettermann AS, Bamberg F, Benndorf M, Mix M, Nicolay NH et al (2021) Radiomics in prostate cancer imaging for a personalized treatment approach--current aspects of methodology and a systematic review on validated studies. Theranostics 11:8027–8042. https://doi.org/10.7150/thno.61207
Comments (0)