A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer

Patel BK, Lobbes M, Lewin J (2018) Contrast enhanced spectral mammography: a review. Semin Ultrasound CT MRI 39:70–79. https://doi.org/10.1053/j.sult.2017.08.005

Article  Google Scholar 

Heywang-Köbrunner S, Viehweg P, Heinig A, Küchler C (1997) Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. Eur J Radiol 24:94–108. https://doi.org/10.1016/s0720-048x(96)01142-4

Article  PubMed  Google Scholar 

Satake H, Ishigaki S, Ito R, Naganawa S (2022) Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence. Radiol Med 127(1):39–56. https://doi.org/10.1007/s11547-021-01423-y

Article  PubMed  Google Scholar 

Dromain C, Balleyguier C, Muller S, Mathieu MC, Rochard F, Opolon P, Sigal R (2006) Evaluation of tumor angiogenesis of breast carcinoma using contrast-enhanced digital mammography. AJR Am J Roentgenol 187:528–537. https://doi.org/10.2214/AJR.05.1944

Article  Google Scholar 

Dromain C, Balleyguier C, Adler G, Garbay JR, Delalogeet S (2009) Contrast-enhanced digital mammography. Eur J Radiol 69:34–42. https://doi.org/10.1016/j.ejrad.2008.07.035

Article  PubMed  Google Scholar 

Li L, Roth R, Germaine P, Ren S, Lee M, Hunter K, Tinney E, Liao L (2017) Contrast-enhanced spectral mammography (CESM) versus breast magnetic resonance imaging (MRI): a retrospective comparison in 66 breast lesions. Diagn Interv Imaging 98:113–123. https://doi.org/10.1016/j.diii.2016.08.013

Article  CAS  PubMed  Google Scholar 

Fallenberg EM, Dromain C, Diekmann F, Engelken F, Krohn M, Singh JM, Ingold-Heppner B, Winzer KJ, Bick U, Renz DM (2014) Contrast-enhanced spectral mammography versus MRI: initial results in the detection of breast cancer and assessment of tumour size. Eur Radiol 24:256–264. https://doi.org/10.1007/s00330-013-3007-7

Article  CAS  PubMed  Google Scholar 

Lewin JM, Isaacs PK, Vance V, Larke FJ (2003) Dual-energy contrast-enhanced digital subtraction mammography: feasibility. Radiology 229:261–268. https://doi.org/10.1148/radiol.2291021276

Article  PubMed  Google Scholar 

Jochelson MS, Dershaw DD, Sung JS, Heerdt AS, Thornton C, Moskowitz CS, Ferrara J, Morris EA (2013) Bilateral contrast-enhanced dual-energy digital mammography: feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma. Radiology 266:743–751. https://doi.org/10.1148/radiol.12121084

Article  PubMed  Google Scholar 

Tagliafico AS, Bignotti B, Rossi F, Signori A, Sormani MP, Valdora F, Calabrese M, Houssami N (2016) Diagnostic performance of contrast-enhanced spectral mammography: systematic review and meta-analysis. Breast 28:13–19. https://doi.org/10.1016/j.breast.2016.04.008

Article  PubMed  Google Scholar 

Liney GP, Sreenivas M, Gibbs P, Garcia-Alvarez R, Turnbull LW (2006) Breast lesion analysis of shape technique: semiautomated vs. manual morphological description. J. Magn. Reason. Imaging 23:493–498. https://doi.org/10.1002/jmri.20541

Article  Google Scholar 

Jochelson MS, Lobbes MBI (2021) Contrast-enhanced mammography: state of the art. Radiology 299(1):36–48. https://doi.org/10.1148/radiol.2021201948

Article  PubMed  Google Scholar 

Covington MF, Salmon S, Weaver BD, Fajardo LL (2024) State-of-the-art for contrast-enhanced mammography. Br J Radiol. https://doi.org/10.1093/bjr/tqae017

Article  PubMed  PubMed Central  Google Scholar 

Fusco R, Sansone M, Granata V, Grimm R, Pace U, Delrio P, Tatangelo F, Botti G, Avallone A, Pecori B, Petrillo A (2019) Diffusion and perfusion MR parameters to assess preoperative short-course radiotherapy response in locally advanced rectal cancer: a comparative explorative study among Standardized Index of Shape by DCE-MRI, intravoxel incoherent motion- and diffusion kurtosis imaging-derived parameters. Abdom Radiol (NY) 44(11):3683–3700. https://doi.org/10.1007/s00261-018-1801-z

Article  PubMed  Google Scholar 

Granata V, Grassi R, Fusco R, Setola SV, Palaia R, Belli A, Miele V, Brunese L, Grassi R, Petrillo A, Izzo F (2020) Assessment of ablation therapy in pancreatic cancer: the radiologist’s challenge. Front Oncol 27(10):560952. https://doi.org/10.3389/fonc.2020.560952

Article  Google Scholar 

Granata V, Fusco R, Risi C, Ottaiano A, Avallone A, De Stefano A, Grimm R, Grassi R, Brunese L, Izzo F, Petrillo A (2020) Diffusion-weighted MRI and diffusion kurtosis imaging to detect RAS mutation in colorectal liver metastasis. Cancers (Basel) 12(9):2420. https://doi.org/10.3390/cancers12092420

Article  CAS  PubMed  Google Scholar 

Granata V, Fusco R, Avallone A, Catalano O, Filice F, Leongito M, Palaia R, Izzo F, Petrillo A (2017) Major and ancillary magnetic resonance features of LI-RADS to assess HCC: an overview and update. Infect Agent Cancer 28(12):23. https://doi.org/10.1186/s13027-017-0132-y

Article  Google Scholar 

Granata V, Fusco R, Sansone M, Grassi R, Maio F, Palaia R, Tatangelo F, Botti G, Grimm R, Curley S, Avallone A, Izzo F, Petrillo A (2020) Magnetic resonance imaging in the assessment of pancreatic cancer with quantitative parameter extraction by means of dynamic contrast-enhanced magnetic resonance imaging, diffusion kurtosis imaging and intravoxel incoherent motion diffusion-weighted imaging. Therap Adv Gastroenterol 21(13):1756284819885052. https://doi.org/10.1177/1756284819885052

Article  CAS  Google Scholar 

Cholangiocarcinoma Working Group (2020) Italian clinical practice guidelines on cholangiocarcinoma - Part I: classification, diagnosis and staging. Dig Liver Dis 52(11):1282–1293. https://doi.org/10.1016/j.dld.2020.06.045

Article  Google Scholar 

Granata V, Fusco R, Setola SV, Picone C, Vallone P, Belli A, Incollingo P, Albino V, Tatangelo F, Izzo F, Petrillo A (2019) Microvascular invasion and grading in hepatocellular carcinoma: correlation with major and ancillary features according to LIRADS. Abdom Radiol (NY) 44(8):2788–2800. https://doi.org/10.1007/s00261-019-02056-6

Article  PubMed  Google Scholar 

Fusco R, Sansone M, Filice S, Carone G, Amato DM, Sansone C, Petrillo A (2016) Pattern recognition approaches for breast cancer DCE-MRI classification: a systematic review. J Med Biol Eng 36:449–459. https://doi.org/10.1007/s40846-016-0163-7

Article  PubMed  PubMed Central  Google Scholar 

Fusco R, Piccirillo A, Sansone M, Granata V, Rubulotta MR, Petrosino T, Barretta ML, Vallone P, Di Giacomo R, Esposito E et al (2021) Radiomics and artificial intelligence analysis with textural metrics extracted by contrast-enhanced mammography in the breast lesions classification. Diagnostics 30:815. https://doi.org/10.3390/diagnostics11050815

Article  Google Scholar 

Fusco R, Piccirillo A, Sansone M, Granata V, Vallone P, Barretta ML, Petrosino T, Siani C, Di Giacomo R, Petrillo A et al (1880) Radiomic and artificial intelligence analysis with textural metrics, morphological and dynamic perfusion features extracted by dynamic contrast-enhanced magnetic resonance imaging in the classification of breast lesions. Appl Sci 2021:11. https://doi.org/10.3390/app11041880

Article  CAS  Google Scholar 

Fanizzi A, Losurdo L, Basile TMA, Bellotti R, Bottigli U, Delogu P, Diacono D, Didonna V, Fausto A, Lombardi A et al (2019) Fully automated support system for diagnosis of breast cancer in contrast-enhanced spectral mammography images. J Clin Med 8:891. https://doi.org/10.3390/jcm8060891

Article  PubMed  PubMed Central  Google Scholar 

Massafra R, Bove S, Lorusso V, Biafora A, Comes MC, Didonna V, Diotaiuti S, Fanizzi A, Nardone A, Nolasco A et al (2021) Radiomic feature reduction approach to predict breast cancer by contrast-enhanced spectral mammography images. Diagnostics 11:684. https://doi.org/10.3390/diagnostics11040684

Article  PubMed  PubMed Central  Google Scholar 

La Forgia D, Fanizzi A, Campobasso F, Bellotti R, Didonna V, Lorusso V, Moschetta M, Massafra R, Tamborra P, Tangaro S et al (2020) Radiomic analysis in contrast-enhanced spectral mammography for predicting breast cancer histological outcome. Diagnostics 10:708. https://doi.org/10.3390/diagnostics10090708

Article  PubMed  PubMed Central  Google Scholar 

Petrillo A, Fusco R, Di Bernardo E, Petrosino T, Barretta ML, Porto A, Granata V, Di Bonito M, Fanizzi A, Massafra R, Petruzzellis N, Arezzo F, Boldrini L, La Forgia D (2022) Prediction of breast cancer histological outcome by radiomics and artificial intelligence analysis in contrast-enhanced mammography. Cancers (Basel) 14(9):2132. https://doi.org/10.3390/cancers14092132

Article  CAS  PubMed  Google Scholar 

van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillon-Robin JC, Pieper S, Aerts HJWL (2017) Computational radiomics system to decode the radiographic phenotype. Can Res 77(21):e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

Article  CAS  Google Scholar 

Chen Z, Lin T, Xia X, Xu H, Ding S (2017) A synthetic neighborhood generation based ensemble learning for the imbalanced data classification. Appl Intell 48:2441–2457

Article  Google Scholar 

Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Statist Methodol. 58:267–288

Article  Google Scholar 

Fusco R, Sansone M, Filice S, Carone G, Amato DM, Sansone C, Petrillo A (2016) Pattern recognition approaches for breast cancer DCE-MRI classification: a systematic review. J Med Biol Eng 36:449–459

Article  PubMed  PubMed Central  Google Scholar 

Sinha S, Lucas-Quesada FA, DeBruhl ND, Sayre J, Farria D, Gorczyca DP, Bassett LW (1997) Multifeature analysis of Gd-enhanced MR images of breast lesions. J Magn Reson Imaging 7:1016–1026. https://doi.org/10.1002/jmri.1880070613

Article  CAS  PubMed  Google Scholar 

Vomweg TW, Buscema PM, Kauczor HU, Teifke A, Intraligi M, Terzi S, Heussel CP, Achenbach T, Rieker O, Mayer D et al (2003) Improved artificial neural networks in prediction of malignancy of lesions in contrast-enhanced MR-mammography. Med Phys 30:2350–2359. https://doi.org/10.1118/1.1600871

Article  CAS  PubMed  Google Scholar 

Sathya DJ, Geetha K (2013) Mass classification in breast DCE-MR images using an artificial neural network trained via a bee colony optimization algorithm. Science 39:294. https://doi.org/10.2306/scienceasia1513-1874.2013.39.294

Article  Google Scholar 

Sathya J, Geetha K (2013) Experimental investigation of classification algorithms for predicting lesion type on breast DCE-MR images. Int J Comput Appl 82:1–8. https://doi.org/10.5120/14101-2125

Comments (0)

No login
gif