Akar I, Ince I, Arici A, Benli I, Aslan C, Senol S, Demir O, Altunkas F, Altindeger N, Akbas A (2017) The Protective Effect of Curcumin on a Spinal Cord Ischemia-Reperfusion Injury Model. Ann Vasc Surg 42:285–292
Anwar MA, Al Shehabi TS, Eid AH (2016) Inflammogenesis of Secondary spinal cord injury. Front Cell Neurosci 10:98
Article PubMed PubMed Central Google Scholar
Bell MT, Puskas F, Agoston VA, Cleveland JC Jr, Freeman KA, Gamboni F, Herson PS, Meng X, Smith PD, Weyant MJ, Fullerton DA, Reece TB (2013) Toll-like receptor 4-dependent microglial activation mediates spinal cord ischemia-reperfusion injury. Circulation 128:S152-156
Article CAS PubMed Google Scholar
Gu C, Li L, Huang Y, Qian D, Liu W, Zhang C, Luo Y, Zhou Z, Kong F, Zhao X, Liu H, Gao P, Chen J, Yin G (2020) Salidroside ameliorates mitochondria-dependent neuronal apoptosis after spinal cord ischemia-reperfusion injury partially through inhibiting oxidative stress and promoting mitophagy. Oxid Med Cell Longev 2020:3549704
Article PubMed PubMed Central Google Scholar
Ha Sen Ta N, Nuo M, Meng QT, Xia ZY (2019) The pathway of Let-7a-1/2-3p and HMGB1 mediated dexmedetomidine inhibiting microglia activation in spinal cord ischemia-reperfusion injury mice. J Mol Neurosci 69:106–114
He R, Jiang Y, Shi Y, Liang J, Zhao L (2020) Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis. Mater Sci Eng C Mater Biol Appl 117:111314
Article CAS PubMed Google Scholar
Hellenbrand DJ, Quinn CM, Piper ZJ, Morehouse CN, Fixel JA, Hanna AS (2021) Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflammation 18:284
Article CAS PubMed PubMed Central Google Scholar
Hu C, Zhang S, Chen Q, Wang R (2022) Ovatodiolide protects ischemia-reperfusion-induced neuronal injury via microglial neuroinflammation via mediating SIRT1/NF-kappaB pathway. Brain Res Bull 180:97–107
Article CAS PubMed Google Scholar
Huang L, Li X, Liu Y, Liang X, Ye H, Yang C, Hua L, Zhang X (2021) Curcumin alleviates cerebral ischemia-reperfusion injury by inhibiting nlrp1-dependent neuronal pyroptosis. Curr Neurovasc Res 18:189–196
Article CAS PubMed Google Scholar
Kurt G, Yildirim Z, Cemil B, Celtikci E, Kaplanoglu GT (2014) Effects of curcumin on acute spinal cord ischemia-reperfusion injury in rabbits. Laboratory investigation. J Neurosurg Spine 20:464–470
Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596–2605
Article CAS PubMed PubMed Central Google Scholar
LeMaire SA, Price MD, Green SY, Zarda S, Coselli JS (2012) Results of open thoracoabdominal aortic aneurysm repair. Ann Cardiothorac Surg 1:286–292
PubMed PubMed Central Google Scholar
Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172
Li H, Wang P, Tang L, Sun J, Zhang Y, Luo W, Luo C, Hu Z, Yang L (2021) Distinct polarization dynamics of microglia and infiltrating macrophages: a novel mechanism of spinal cord ischemia/reperfusion injury. J Inflamm Res 14:5227–5239
Article CAS PubMed PubMed Central Google Scholar
Li XQ, Cao XZ, Wang J, Fang B, Tan WF, Ma H (2014) Sevoflurane preconditioning ameliorates neuronal deficits by inhibiting microglial MMP-9 expression after spinal cord ischemia/reperfusion in rats. Mol Brain 7:69
Article PubMed PubMed Central Google Scholar
Lima B, Nowicki ER, Blackstone EH, Williams SJ, Roselli EE, Sabik JF 3rd, Lytle BW, Svensson LG (2012) Spinal cord protective strategies during descending and thoracoabdominal aortic aneurysm repair in the modern era: the role of intrathecal papaverine. J Thorac Cardiovasc Surg 143(945–952):e941
Ling X, Lu J, Yang J, Qin H, Zhao X, Zhou P, Zheng S, Zhu P (2021) Non-coding RNAs: emerging therapeutic targets in spinal cord ischemia-reperfusion injury. Front Neurol 12:680210
Article PubMed PubMed Central Google Scholar
Machado DI, de Oliveira Silva E, Ventura S, Vattimo MFF (2022) The effect of curcumin on renal ischemia/reperfusion injury in diabetic rats. Nutrients 14:2798
Mi J, Yang Y, Yao H, Huan Z, Xu C, Ren Z, Li W, Tang Y, Fu R, Ge X (2021) Inhibition of heat shock protein family A member 8 attenuates spinal cord ischemia-reperfusion injury via astrocyte NF-kappaB/NLRP3 inflammasome pathway : HSPA8 inhibition protects spinal ischemia-reperfusion injury. J Neuroinflammation 18:170
Article CAS PubMed PubMed Central Google Scholar
Miranda V, Sousa J, Mansilha A (2018) Spinal cord injury in endovascular thoracoabdominal aortic aneurysm repair: prevalence, risk factors and preventive strategies. Int Angiol 37:112–126
Mokhtari-Zaer A, Marefati N, Atkin SL, Butler AE, Sahebkar A (2018) The protective role of curcumin in myocardial ischemia-reperfusion injury. J Cell Physiol 234:214–222
Okorji UP, Velagapudi R, El-Bakoush A, Fiebich BL, Olajide OA (2016) Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms. Mol Neurobiol 53:6426–6443
Article CAS PubMed Google Scholar
Quadri SA, Farooqui M, Ikram A, Zafar A, Khan MA, Suriya SS, Claus CF, Fiani B, Rahman M, Ramachandran A, Armstrong IIT, Taqi MA, Mortazavi MM (2020) Recent update on basic mechanisms of spinal cord injury. Neurosurg Rev 43:425–441
Safi HJ, Miller CC, 3rd Huynh TT, Estrera AL, Porat EE, Winnerkvist AN, Allen BS, Hassoun HT, Moore FA (2003) Distal aortic perfusion and cerebrospinal fluid drainage for thoracoabdominal and descending thoracic aortic repair: ten years of organ protection. Ann Surg 238:372–380; discussion 380–371
Shimizu H, Mori A, Yoshitake A, Yamada T, Morisaki H, Okano H, Yozu R (2014) Thoracic and thoracoabdominal aortic repair under regional spinal cord hypothermia. Eur J Cardiothorac Surg 46:40–43
Smith PD, Bell MT, Puskas F, Meng X, Cleveland JC Jr, Weyant MJ, Fullerton DA, Reece TB (2013) Preservation of motor function after spinal cord ischemia and reperfusion injury through microglial inhibition. Ann Thorac Surg 95:1647–1653
Sun F, Zhang H, Shi J, Huang T, Wang Y (2021) Astragalin protects against spinal cord ischemia reperfusion injury through attenuating oxidative stress-induced necroptosis. Biomed Res Int 2021:7254708
Article PubMed PubMed Central Google Scholar
Sun Z, Zhao T, Lv S, Gao Y, Masters J, Weng H (2018) Dexmedetomidine attenuates spinal cord ischemia-reperfusion injury through both anti-inflammation and anti-apoptosis mechanisms in rabbits. J Transl Med 16:209
Article CAS PubMed PubMed Central Google Scholar
Tom S, Rane A, Katewa AS, Chamoli M, Matsumoto RR, Andersen JK, Chinta SJ (2019) Gedunin inhibits oligomeric abeta(1–42)-induced microglia activation via modulation of Nrf2-NF-kappaB Signaling. Mol Neurobiol 56:7851–7862
Article CAS PubMed Google Scholar
Wang L, Li W, Kang Z, Liu Y, Deng X, Tao H, Xu W, Li R, Sun X, Zhang JH (2009) Hyperbaric oxygen preconditioning attenuates early apoptosis after spinal cord ischemia in rats. J Neurotrauma 26:55–66
Wong CH, Crack PJ (2008) Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr Med Chem 15:1–14
Article CAS PubMed Google Scholar
Xu GY, Xu S, Zhang YX, Yu ZY, Zou F, Ma XS, Xia XL, Zhang WJ, Jiang JY, Song J (2022) Cell-free extracts from human fat tissue with a hyaluronan-based hydrogel attenuate inflammation in a spinal cord injury model through M2 microglia/microphage polarization. Small 18:e2107838
Yu S, Xie L, Liu Z, Li C, Liang Y (2019) MLN4924 exerts a neuroprotective effect against oxidative stress via Sirt1 in spinal cord ischemia-reperfusion injury. Oxid Med Cell Longev 2019:7283639
Article PubMed PubMed Central Google Scholar
Zhang L, Zhang X, Liu Y, Wang S, Jia G (2022) Vagus nerve stimulation promotes the M1-to-M2 transition via inhibition of TLR4/NF-kappaB in microglial to rescue the reperfusion injury. J Stroke Cerebrovasc Dis 31:106596
Zvara DA (2002) Thoracoabdominal aneurysm surgery and the risk of paraplegia: contemporary practice and future directions. J Extra Corpor Technol 34:11–17
Comments (0)