Quadro, L., Giordano, E., Costabile, B. K., Nargis, T., Iqbal, J., Kim, Y., Wassef, L., & Hussain, M. M. (2020). Interplay between beta-carotene and lipoprotein metabolism at the maternal-fetal barrier. Biochimica et Biophysica Acta, Molecular Cell Research, 1865, 158591.
Qian, C., Decker, E. A., Xiao, H., & McClements, D. J. (2012). Physical and chemical stability of beta-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chem, 132, 1221–1229.
Article CAS PubMed Google Scholar
Grar, H., Dib, W., Gourine, H., Negaoui, H., Taleb, B. H. F., Louaar, A., Ouldhocine, S., Kaddouri, H., Kheroua, O., & Saidi, D. (2020). β-Carotene improves intestinal barrier function by modulating proinflammatory cytokines and improving antioxidant capacity in β-lactoglobulin-sensitized mice. Journal of Biological Regulators and Homeostatic Agents, 34, 1689–1697.
Hardin, J. A., Wallace, L. E., Wong, J. F., O’Loughlin, E. V., Urbanski, S. J., Gall, D. G., MacNaughton, W. K., & Beck, P. L. (2004). Aquaporin expression is downregulated in a murine model of colitis and in patients with ulcerative colitis, Crohn’s disease and infectious colitis. Cell Tissue Res, 318, 313–323.
Article CAS PubMed Google Scholar
Zhao, G., Li, J., Wang, J., Shen, X., & Sun, J. (2014). Aquaporin 3 and 8 are down-regulated in TNBS-induced rat colitis. Biochemical and Biophysical Research Communications, 443, 161–166.
Article CAS PubMed Google Scholar
Ricanek, P., Lunde, L. K., Frye, S. A., Støen, M., Nygård, S., Morth, J. P., Rydning, A., Vatn, M. H., Amiry-Moghaddam, M., & Tønjum, T. (2015). Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease. Clinical and Experimental Gastroenterology, 8, 49–67.
Article PubMed PubMed Central Google Scholar
Sisto, M., Ribatti, D., & Lisi, S. (2019). Aquaporin water channels: new perspectives on the potential role in inflammation. Advances in Protein Chemistry and Structural Biology, 116, 311–345.
Article CAS PubMed Google Scholar
Maidhof, R., Jacobsen, T., Papatheodorou, A., & Chahine, N. O. (2014). Inflammation induces irreversible biophysical changes in isolated nucleus pulposus cells. PLoS One, 9, e99621.
Article PubMed PubMed Central ADS Google Scholar
Baud, V., & Karin, M. (2001). Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biology, 11, 372–377.
Nagahara, M., Waguri-Nagaya, Y., Yamagami, T., Aoyama, M., Tada, T., Inoue, K., Asai, K., & Otsuka, T. (2010). TNF-alpha-induced aquaporin 9 in synoviocytes from patients with OA and RA. Rheumatology (Oxford), 49, 898–906.
Article CAS PubMed Google Scholar
Fang, J. Y., & Richardson, B. C. (2005). The MAPK signalling pathways and colorectal cancer. The Lancet Oncology, 6, 322–327.
Article CAS PubMed Google Scholar
Dong, C., Davis, R. J., & Flavell, R. A. (2002). MAP kinases in the immune response. Annual Review of Immunology, 20, 55–72.
Article CAS PubMed Google Scholar
Chen, D. B., & Davis, J. S. (2003). Epidermal growth factor induces c-fos and c-jun mRNA via Raf-1/MEK1/ERK-dependent and -independent pathways in bovine luteal cells. Molecular and Cellular Endocrinology, 200, 141–154.
Article CAS PubMed Google Scholar
Lee, J. C., Laydon, J. T., McDonnell, P. C., Gallagher, T. F., Kumar, S., Green, D., McNulty, D., Blumenthal, M. J., Heys, J. R., Landvatter, S. W., Strickler, J. E., McLaughlin, M. M., Siemens, I. R., Fisher, S. M., Livi, G. P., White, J. R., Adams, J. L., & Young, P. R. (1994). A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature, 372, 739–746.
Article CAS PubMed ADS Google Scholar
Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., & Cobb, M. H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews, 22, 153–183.
Carter, A. B., Knudtson, K. L., Monick, M. M., & Hunninghake, G. W. (1999). The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression. The role of TATA-binding protein (TBP). Journal of Biological Chemistry, 274, 30858–30863.
Article CAS PubMed Google Scholar
Schindler, J. F., Monahan, J. B., & Smith, W. G. (2007). p38 pathway kinases as anti-inflammatory drug targets. Journal of Dental Research, 86, 800–811.
Article CAS PubMed Google Scholar
Underwood, D. C., Osborn, R. R., Bochnowicz, S., Webb, E. F., Rieman, D. J., Lee, J. C., Romanic, A. M., Adams, J. L., Hay, D. W., & Griswold, D. E. (2000). SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. American Journal of Physiology-Lung Cellular and Molecular Physiology, 279, L895–902.
Article CAS PubMed Google Scholar
Badger, A. M., Bradbeer, J. N., Votta, B., Lee, J. C., Adams, J. L., & Griswold, D. E. (1996). Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. Journal of Pharmacology and Experimental Therapeutics., 279, 1453–1461.
Wadsworth, S. A., Cavender, D. E., Beers, S. A., Lalan, P., Schafer, P. H., Malloy, E. A., Wu, W., Fahmy, B., Olini, G. C., Davis, J. E., Pellegrino-Gensey, J. L., Wachter, M. P., & Siekierka, J. J. (1999). RWJ 67657, a potent, orally active inhibitor of p38 mitogen-activated protein kinase. Journal of Pharmacology and Experimental Therapeutics, 291, 680–687.
Zhao, W. X., Cui, N., Jiang, H. Q., Ji, X. M., Han, X. C., Han, B. B., Wang, T., & Wang, S. J. (2017). Effects of radix astragali and its split components on gene expression profiles related to water metabolism in rats with the dampness stagnancy due to spleen deficiency syndrome. Evidence-Based Complementary and Alternative Medicine, 2017, 4946031.
Article PubMed PubMed Central Google Scholar
Chen, J., Li, Y., Tian, Y., Huang, C., Li, D., Zhong, Q., & Ma, X. (2015). Interaction between microbes and host intestinal health: modulation by dietary nutrients and gut-brain-endocrine-immune axis. Current Protein & Peptide Science, 16, 592–603.
Fan, P., Li, L., Rezaei, A., Eslamfam, S., Che, D., & Ma, X. (2015). Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Current Protein & Peptide Science, 16, 646–654.
Zhu, L., Cai, X., Guo, Q., Chen, X., Zhu, S., & Xu, J. (2013). Effect of N-acetyl cysteine on enterocyte apoptosis and intracellular signalling pathways’ response to oxidative stress in weaned piglets. British Journal of Nutrition, 110, 1938–1947.
Article CAS PubMed Google Scholar
Modina, S. C., Polito, U., Rossi, R., Corino, C., & Di Giancamillo, A. (2019). Nutritional regulation of gut barrier integrity in weaning piglets. Animals (Basel), 2019, 9.
Oswald, I. P. (2006). Role of intestinal epithelial cells in the innate immune defence of the pig intestine. Veterinary Research, 37, 359–368.
Article CAS PubMed Google Scholar
Johansson, M. E., Sjövall, H., & Hansson, G. C. (2013). The gastrointestinal mucus system in health and disease. Nature Reviews Gastroenterology & Hepatology, 10, 352–361.
Baud, V., & Derudder, E. (2011). Control of NF-κB activity by proteolysis. Current Topics in Microbiology and Immunology, 349, 97–114.
Lauridsen, C. (2019). From oxidative stress to inflammation: redox balance and immune system. Poultry Science, 98, 4240–4246.
Article CAS PubMed Google Scholar
Cassidy, H., Radford, R., Slyne, J., O’Connell, S., Slattery, C., Ryan, M. P., & McMorrow, T. (2012). The role of MAPK in drug-induced kidney injury. Journal of Signal Transduction, 2012, 463617.
Article PubMed PubMed Central Google Scholar
Wan, F., & Lenardo, M. J. (2010). The nuclear signaling of NF-kappaB: current knowledge, new insights, and future perspectives. Cell Research, 20, 24–33.
Article CAS PubMed Google Scholar
Umenishi, F., & Schrier, R. W. (2002). Identification and characterization of a novel hypertonicity-responsive element in the human aquaporin-1 gene. Biochemical and Biophysical Research Communications, 292, 771–775.
Article CAS PubMed Google Scholar
Umenishi, F., & Schrier, R. W. (2003). Hypertonicity-induced aquaporin-1 (AQP1) expression is mediated by the activation of MAPK pathways and hypertonicity-responsive element in the AQP1 gene. Journal of Biological Chemistry, 278, 15765–15770.
Article CAS PubMed Google Scholar
Umenishi, F., Narikiyo, T., & Schrier, R. W. (2004). Hypertonic induction of aquaporin-1 water channel independent of transcellular osmotic gradient. Biochemical and Biophysical Research Communications, 325, 595–599.
Article CAS PubMed Google Scholar
Zhao, G. X., Dong, P. P., Peng, R., Li, J., Zhang, D. Y., Wang, J. Y., Shen, X. Z., Dong, L., & Sun, J. Y. (2016). Expression, localization and possible functions of aquaporins 3 and 8 in rat digestive system. Biotechnic & Histochemistry, 91, 269–276.
Matsuura, M., Okazaki, K., Nishio, A., Nakase, H., Tamaki, H., Uchida, K., Nishi, T., Asada, M., Kawasaki, K., Fukui, T., Yoshizawa, H., Ohashi, S., Inoue, S., Kawanami, C., Hiai, H., Tabata, Y., & Chiba, T. (2005). Therapeutic effects of rectal administration of basic fibroblast growth factor on experimental murine colitis. Gastroenterology, 128, 975–986.
Comments (0)