Huang, X., Li, X.-Y., Shan, W.-L., Chen, Y., Zhu, Q., & Xia, B.-R. (2023). Targeted therapy and immunotherapy: Diamonds in the rough in the treatment of epithelial ovarian cancer. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1131342.
Sung, S., Hong, Y., Kim, B., Choi, J., Kim, J. W., Park, S. & & Park, S. K. (2023). Stratifying the risk of ovarian cancer incidence by histologic subtypes in the Korean Epithelial Ovarian Cancer Study (Ko‐EVE. Cancer Medicine, 12(7), 8742–8753. https://doi.org/10.1002/cam4.5612.
Ding, M., Dong, C., Mao, Y., Liu, S., Zhao, Y., & Wang, X. (2023). A combined network pharmacology and molecular biology approach to investigate the potential mechanisms of G-M6 on ovarian cancer. Bioorganic Chemistry, 138, 106657 https://doi.org/10.1016/j.bioorg.2023.106657.
Article CAS PubMed Google Scholar
Kalimuthu, A. K., Pavadai, P., Panneerselvam, T., Babkiewicz, E., Pijanowska, J., Mrówka, P., & Kunjiappan, S. (2022). Cytotoxic potential of bioactive compounds from Aspergillus flavus, an endophytic fungus isolated from Cynodon dactylon, against breast cancer: experimental and computational approach. Molecules, 27(24), 8814 https://doi.org/10.3390/molecules27248814.
Article CAS PubMed PubMed Central Google Scholar
Gao, X., & Homayoonfal, M. (2023). Exploring the anti-cancer potential of Ganoderma lucidum polysaccharides (GLPs) and their versatile role in enhancing drug delivery systems: a multifaceted approach to combat cancer. Cancer Cell International, 23(1), 324 https://doi.org/10.1186/s12935-023-03146-8.
Article CAS PubMed PubMed Central Google Scholar
Sen, S., Chakraborty, R., De, B., & Devanna, N. (2011). An ethnobotanical survey of medicinal plants used by ethnic people in West and South district of Tripura, India. Journal of Forestry Research, 22(3), 417–426. https://doi.org/10.1007/s11676-011-0184-6.
Malpani, A., Mahurkar, N., & Aswar, U. (2020). Phytochemical analysis and antifertility potential of Cynodon dactylon in female Wistar rats: A herbal approach towards contraception. Chinese Herbal Medicines, 12(3), 281–288. https://doi.org/10.1016/j.chmed.2020.06.001.
Article PubMed PubMed Central Google Scholar
Zhou, J., Li, H., Wu, B., Zhu, L., Huang, Q., Guo, Z., & Guo, T. (2024). Network pharmacology combined with experimental verification to explore the potential mechanism of naringenin in the treatment of cervical cancer. Scientific Reports, 14(1), 1860 https://doi.org/10.1038/s41598-024-52413-9.
Article CAS PubMed PubMed Central Google Scholar
Qasim, M., Abdullah, M., Ali Ashfaq, U., Noor, F., Nahid, N., Alzamami, A., & Khurshid, M. (2023). Molecular mechanism of Ferula asafoetida for the treatment of asthma: Network pharmacology and molecular docking approach. Saudi Journal of Biological Sciences, 30(2), 103527 https://doi.org/10.1016/j.sjbs.2022.103527.
Article CAS PubMed Google Scholar
Roy, S., Pawar, S., & Chowdhary, A. (2016). Evaluation of In Vitro cytotoxic and antioxidant activity of Datura metel Linn. and Cynodon dactylon Linn. extracts. Pharmacognosy Research, 8(2), 123 https://doi.org/10.4103/0974-8490.175610.
Article CAS PubMed PubMed Central Google Scholar
Vinayagam, R., Santhoshkumar, M., Lee, K. E., David, E., & Kang, S. G. (2021). Bioengineered gold nanoparticles using Cynodon dactylon extract and its cytotoxicity and antibacterial activities. Bioprocess and Biosystems Engineering, 44(6), 1253–1262. https://doi.org/10.1007/s00449-021-02527-5.
Article CAS PubMed Google Scholar
Alex, S. B., Sujamol, M. S., Latha, M. S. (2023). Evaluation of antimicrobial, anti-inflammatory and cytotoxic effects of silver nanoparticles synthesised from Cynodon dactylon. Natural Product Research, 1–8. https://doi.org/10.1080/14786419.2023.2290154.
Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. P. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry and Therapeutics. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-22631-z.
Hartono Wijaya, S., Tanaka, Y., Altaf-Ul-Amin, M. D., Hirai Morita, A., Mochamad Afendi, F., Batubara, I., & Kanaya, S. (2016). Utilization of KNApSAcK family databases for developing herbal medicine systems. Journal of Computer Aided Chemistry, 17(0), 1–7. https://doi.org/10.2751/jcac.17.1.
Lans, C., & van Asseldonk, T. (2020). Dr. Duke’s Phytochemical and Ethnobotanical Databases, a Cornerstone in the Validation of Ethnoveterinary Medicinal Plants, as Demonstrated by Data on Pets in British Columbia (pp. 219–246). https://doi.org/10.1007/978-3-030-44930-8_10.
Singh, V., Singh, A., Singh, I. P., & Kumar, B. D. (2021). Phytomedicinal properties of Cynodon dactylon (L.) pers. (durva) in its traditional preparation and extracts. Phytomedicine Plus, 1(1), 100020 https://doi.org/10.1016/j.phyplu.2021.100020.
Savadi, S., Vazifedoost, M., Didar, Z., Nematshahi, M. M., & Jahed, E. (2020). Phytochemical analysis and antimicrobial/antioxidant activity of Cynodon dactylon (L.) Pers. Rhizome Methanolic Extract. Journal of Food Quality, 1–10. https://doi.org/10.1155/2020/5946541.
Kim, S., & Bolton, E. E. (2024). PubChem: A large‐scale public chemical database for drug discovery (pp. 39–66). https://doi.org/10.1002/9783527830497.ch2.
Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255.
Article CAS PubMed PubMed Central Google Scholar
Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014). SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research, 42(1), 32–38. https://doi.org/10.1093/nar/gku293.
Piñero, J., Saüch, J., Sanz, F., & Furlong, L. I. (2021). The DisGeNET cytoscape app: Exploring and visualizing disease genomics data. Computational and Structural Biotechnology Journal, 19, 2960–2967. https://doi.org/10.1016/j.csbj.2021.05.015.
Article CAS PubMed PubMed Central Google Scholar
Lin, Y., & Hu, Z. (2021). Bioinformatics analysis of candidate genes involved in ethanol-induced microtia pathogenesis based on a human genome database: GeneCards. International Journal of Pediatric Otorhinolaryngology, 142, 110595 https://doi.org/10.1016/j.ijporl.2020.110595.
Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S. & von Mering, C. (2021) The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–D612. https://doi.org/10.1093/nar/gkaa1074.
Mousavian, Z., Khodabandeh, M., Sharifi-Zarchi, A., Nadafian, A., & Mahmoudi, A. (2021). StrongestPath: a Cytoscape application for protein–protein interaction analysis. BMC Bioinformatics, 22(1), 352 https://doi.org/10.1186/s12859-021-04230-4.
Article CAS PubMed PubMed Central Google Scholar
Tang, Y., Li, M., Wang, J., Pan, Y., & Wu, F.-X. (2015). CytoNCA: A Cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems, 127, 67–72. https://doi.org/10.1016/j.biosystems.2014.11.005.
Article CAS PubMed Google Scholar
Ma, H., He, Z., Chen, J., Zhang, X., & Song, P. (2021). Identifying of biomarkers associated with gastric cancer based on 11 topological analysis methods of CytoHubba. Scientific Reports, 11(1), 1331 https://doi.org/10.1038/s41598-020-79235-9.
Article CAS PubMed PubMed Central Google Scholar
Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., & Chang, W. (2022). DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Research, 50(1), 216–221. https://doi.org/10.1093/nar/gkac194.
Zhou, J., Tan, Y., Hu, L., Fu, J., Li, D., Chen, J., & Long, Y. (2022). Inhibition of HSPA8 by rifampicin contributes to ferroptosis via enhancing autophagy. Liver International, 42(12), 2889–2899. https://doi.org/10.1111/liv.15459.
Article CAS PubMed Google Scholar
Zhao, X., Yin, S., Shi, J., Zheng, M., He, C., Meng, H., & Wang, Y. (2022). The association between several autophagy-related genes and their prognostic values in hepatocellular carcinoma: a study on the foundation of TCGA, GEPIA and HPA databases. Molecular Biology Reports, 49(11), 10269–10277. https://doi.org/10.1007/s11033-022-07426-w.
Article CAS PubMed Google Scholar
Webb, B., & Sali, A. (2016). Comparative Protein Structure Modeling Using MODELLER. Current Protocols in Bioinformatics, 54(1). https://doi.org/10.1002/cpbi.3.
Meng, E. C., Goddard, T. D., Pettersen, E. F., Couch, G. S., Pearson, Z. J., Morris, J. H., & Ferrin, T. E. (2023). UCSF ChimeraX: Tools for structure building and analysis. Protein Science, 32(11). https://doi.org/10.1002/pro.4792.
Tanchuk, V. Y., Tanin, V. O., Vovk, A. I., & Poda, G. (2016). A new, improved hybrid scoring function for molecular docking and scoring based on AutoDock and AutoDock Vina. Chemical Biology & Drug Design, 87(4), 618–625. https://doi.org/10.1111/cbdd.12697.
Yoshikawa, N., & Hutchison, G. R. (2019). Fast, efficient fragment-based coordinate generation for Open Babel. Journal of Cheminformatics, 11(1), 49 https://doi.org/10.1186/s13321-019-0372-5.
Article PubMed PubMed Central Google Scholar
Baroroh, S. S., M.Biotek, U., Muscifa, Z. S., Destiarani, W., Rohmatullah, F. G. & & Yusuf, M. (2023). Molecular interaction analysis and visualization of protein-ligand docking using Biovia Discovery Studio Visualizer. Indonesian Journal of Computational Biology (IJCB), 2(1), 22. https://doi.org/10.24198/ijcb.v2i1.46322.
Ahmed, S. R., Al-Sanea, M. M., Mostafa, E. M., Qasim, S., Abelyan, N., & Mokhtar, F. A. (2022). A network pharmacology analysis of cytotoxic triterpenes isolated from euphorbia abyssinica latex supported by drug-likeness and ADMET studies. ACS Omega, 7(21), 17713–17722.
Comments (0)