Zwick, R. K., Guerrero-Juarez, C. F., Horsley, V., & Plikus, M. V. (2018). Anatomical, physiological, and functional diversity of adipose tissue. Cell metabolism, 27(1), 68–83.
Article PubMed PubMed Central CAS Google Scholar
Nguyen, T. T., & Corvera, S. (2024). Adipose tissue as a linchpin of organismal ageing. Nature Metabolism, 6(5), 793–807.
Article PubMed CAS Google Scholar
Corrales, P., Martin-Taboada, M., Vivas-García, Y., Torres, L., Ramirez-Jimenez, L., Lopez, Y., Horrillo, D., Vila-Bedmar, R., Barber-Cano, E., Izquierdo-Lahuerta, A., Peña-Chilet, M., Martínez, C., Dopazo, J., Ros, M., & Medina-Gomez, G. (2023). microRNAs-mediated regulation of insulin signaling in white adipose tissue during aging: Role of caloric restriction. Aging Cell, 22(11), e13919.
Article PubMed PubMed Central CAS Google Scholar
Oikonomou, E. K., & Antoniades, C. (2019). The role of adipose tissue in cardiovascular health and disease. Nature Reviews. Cardiology, 16(2), 83–99.
Lu, T. X., & Rothenberg, M. E. (2018). MicroRNA. The Journal of Allergy and Clinical Immunology, 141(4), 1202–1207.
Article PubMed CAS Google Scholar
Thomou, T., Mori, M. A., Dreyfuss, J. M., Konishi, M., Sakaguchi, M., Wolfrum, C., Rao, T. N., Winnay, J. N., Garcia-Martin, R., Grinspoon, S. K., Gorden, P., & Kahn, C. R. (2017). Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature, 542(7642), 450–455.
Article PubMed PubMed Central CAS Google Scholar
Aldiss, P., Betts, J., Sale, C., Pope, M., Budge, H., & Symonds, M. E. (2018). Exercise-induced ‘browning’ of adipose tissues. Metabolism: Clinical and Experimental, 81, 63–70.
Article PubMed CAS Google Scholar
Fang, P., Ge, R., She, Y., Zhao, J., Yan, J., Yu, X., Jin, Y., Shang, W., & Zhang, Z. (2022). Adipose tissue spexin in physical exercise and age-associated diseases. Ageing Research Reviews, 73, 101509.
Article PubMed CAS Google Scholar
Chen, X., He, H., Xie, K., Zhang, L., & Cao, C. (2024). Effects of various exercise types on visceral adipose tissue in individuals with overweight and obesity: A systematic review and network meta-analysis of 84 randomized controlled trials. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 25(3), e13666.
Article PubMed CAS Google Scholar
Chen, X., Huang, W., Zhang, J., Li, Y., Xing, Z., Guo, L., Jiang, H., & Zhang, J. (2023). High-intensity interval training induces lactylation of fatty acid synthase to inhibit lipid synthesis. BMC Biology, 21(1), 196.
Article PubMed PubMed Central CAS Google Scholar
Ni, P. S., Ma, S., Wang, Z. Z., He, J. H., Zhang, C. K., Li, B. M., Yu, X. M., & Li, F. H. (2023). Indirect regulation of HIPPO pathway by miRNA mediates high-intensity intermittent exercise to ameliorate aging skeletal muscle function. Scandinavian Journal of Medicine & Science in Sports, 33(6), 834–847.
de Mendonça, M., Rocha, K. C., de Sousa, É., Pereira, B. M. V., Oyama, L. M., & Rodrigues, A. C. (2020). Aerobic exercise training regulates serum extracellular vesicle miRNAs linked to obesity to promote their beneficial effects in mice. American Journal of Physiology. Endocrinology and Metabolism, 319(3), E579–E591.
Androvic, P., Benesova, S., Rohlova, E., Kubista, M., & Valihrach, L. (2022). Small RNA-sequencing for analysis of circulating miRNAs: Benchmark study. The Journal of Molecular Diagnostics: JMD, 24(4), 386–394.
Article PubMed CAS Google Scholar
Sun, L., & Li, F. H. (2018). Effects of long-term high-intensity interval training on Adiponectin/AMPK signaling pathway and autophagy in skeletal muscle of aged rats. China Sport Science, 38(11), 50–59.
Camell, C. D., Günther, P., Lee, A., Goldberg, E. L., Spadaro, O., Youm, Y. H., Bartke, A., Hubbard, G. B., Ikeno, Y., Ruddle, N. H., Schultze, J., & Dixit, V. D. (2019). Aging induces an Nlrp3 inflammasome-dependent expansion of Adipose B cells that impairs metabolic homeostasis. Cell Metabolism, 30(6), 1024–1039.e6.
Article PubMed PubMed Central CAS Google Scholar
Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of cellular senescence. Trends in Cell Biology, 28(6), 436–453.
Article PubMed CAS Google Scholar
Jang, Y., Kwon, I., Cosio-Lima, L., Wirth, C., Vinci, D. M., & Lee, Y. (2019). Endurance exercise prevents metabolic distress-induced senescence in the hippocampus. Medicine and Science in Sports and Exercise, 51(10), 2012–2024.
Article PubMed CAS Google Scholar
Benador, I. Y., Veliova, M., Liesa, M., & Shirihai, O. S. (2019). Mitochondria bound to lipid droplets: Where mitochondrial dynamics regulate lipid storage and utilization. Cell Metabolism, 29(4), 827–835.
Article PubMed PubMed Central CAS Google Scholar
Shaw, C. S., Clark, J. A., & Shepherd, S. O. (2013). HSL and ATGL: The movers and shakers of muscle lipolysis. The Journal of Physiology, 591(24), 6137–6138.
Article PubMed PubMed Central CAS Google Scholar
Ahmadian, M., Abbott, M. J., Tang, T., Hudak, C. S., Kim, Y., Bruss, M., Hellerstein, M. K., Lee, H. Y., Samuel, V. T., Shulman, G. I., Wang, Y., Duncan, R. E., Kang, C., & Sul, H. S. (2011). Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metabolism, 13(6), 739–748.
Article PubMed PubMed Central CAS Google Scholar
Li, J., Yi, X., Li, T., Yao, T., Li, D., Hu, G., Ma, Y., Chang, B., & Cao, S. (2022). Effects of exercise and dietary intervention on muscle, adipose tissue, and blood IRISIN levels in obese male mice and their relationship with the beigeization of white adipose tissue. Endocrine Connections, 11(3), e210625.
Article PubMed PubMed Central CAS Google Scholar
Cheng, C. F., Ku, H. C., & Lin, H. (2018). PGC-1α as a pivotal factor in lipid and metabolic regulation. International journal of Molecular Sciences, 19(11), 3447.
Article PubMed PubMed Central Google Scholar
Thirupathi, A., da Silva Pieri, B. L., Queiroz, J. A. M. P., Rodrigues, M. S., de Bem Silveira, G., de Souza, D. R., Luciano, T. F., Silveira, P. C. L., & De Souza, C. T. (2019). Strength training and aerobic exercise alter mitochondrial parameters in brown adipose tissue and equally reduce body adiposity in aged rats. Journal of Physiology and Biochemistry, 75(1), 101–108.
Article PubMed CAS Google Scholar
Wiley, C. D., & Campisi, J. (2021). The metabolic roots of senescence: Mechanisms and opportunities for intervention. Nature Metabolism, 3(10), 1290–1301.
Article PubMed PubMed Central CAS Google Scholar
He, C., Bassik, M. C., Moresi, V., Sun, K., Wei, Y., Zou, Z., An, Z., Loh, J., Fisher, J., Sun, Q., Korsmeyer, S., Packer, M., May, H. I., Hill, J. A., Virgin, H. W., Gilpin, C., Xiao, G., Bassel-Duby, R., Scherer, P. E., & Levine, B. (2012). Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 481(7382), 511–515.
Article PubMed PubMed Central CAS Google Scholar
Chen, Q., Cai, J., Li, X., Song, A., Guo, H., Sun, Q., Yang, C., & Yang, P. (2019). Progranulin promotes regeneration of inflammatory periodontal bone defect in rats via anti-inflammation, osteoclastogenic inhibition, and osteogenic promotion. Inflammation, 42(1), 221–234.
Article PubMed CAS Google Scholar
Wan, J., Zhang, G., Li, X., Qiu, X., Ouyang, J., Dai, J., & Min, S. (2021). Matrix metalloproteinase 3: A promoting and destabilizing factor in the pathogenesis of disease and cell differentiation. Frontiers in Physiology, 12, 663978.
Article PubMed PubMed Central Google Scholar
Singh, S., Anshita, D., & Ravichandiran, V. (2021). MCP-1: Function, regulation, and involvement in disease. International Immunopharmacology, 101(Pt B), 107598.
Comments (0)