Difference Analysis of MiRNA Expression Profiles in Aged Female Rat Adipose Tissue Regulated by HIIT and MICT

Zwick, R. K., Guerrero-Juarez, C. F., Horsley, V., & Plikus, M. V. (2018). Anatomical, physiological, and functional diversity of adipose tissue. Cell metabolism, 27(1), 68–83.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nguyen, T. T., & Corvera, S. (2024). Adipose tissue as a linchpin of organismal ageing. Nature Metabolism, 6(5), 793–807.

Article  PubMed  CAS  Google Scholar 

Corrales, P., Martin-Taboada, M., Vivas-García, Y., Torres, L., Ramirez-Jimenez, L., Lopez, Y., Horrillo, D., Vila-Bedmar, R., Barber-Cano, E., Izquierdo-Lahuerta, A., Peña-Chilet, M., Martínez, C., Dopazo, J., Ros, M., & Medina-Gomez, G. (2023). microRNAs-mediated regulation of insulin signaling in white adipose tissue during aging: Role of caloric restriction. Aging Cell, 22(11), e13919.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Oikonomou, E. K., & Antoniades, C. (2019). The role of adipose tissue in cardiovascular health and disease. Nature Reviews. Cardiology, 16(2), 83–99.

Article  PubMed  Google Scholar 

Lu, T. X., & Rothenberg, M. E. (2018). MicroRNA. The Journal of Allergy and Clinical Immunology, 141(4), 1202–1207.

Article  PubMed  CAS  Google Scholar 

Thomou, T., Mori, M. A., Dreyfuss, J. M., Konishi, M., Sakaguchi, M., Wolfrum, C., Rao, T. N., Winnay, J. N., Garcia-Martin, R., Grinspoon, S. K., Gorden, P., & Kahn, C. R. (2017). Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature, 542(7642), 450–455.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Aldiss, P., Betts, J., Sale, C., Pope, M., Budge, H., & Symonds, M. E. (2018). Exercise-induced ‘browning’ of adipose tissues. Metabolism: Clinical and Experimental, 81, 63–70.

Article  PubMed  CAS  Google Scholar 

Fang, P., Ge, R., She, Y., Zhao, J., Yan, J., Yu, X., Jin, Y., Shang, W., & Zhang, Z. (2022). Adipose tissue spexin in physical exercise and age-associated diseases. Ageing Research Reviews, 73, 101509.

Article  PubMed  CAS  Google Scholar 

Chen, X., He, H., Xie, K., Zhang, L., & Cao, C. (2024). Effects of various exercise types on visceral adipose tissue in individuals with overweight and obesity: A systematic review and network meta-analysis of 84 randomized controlled trials. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 25(3), e13666.

Article  PubMed  CAS  Google Scholar 

Chen, X., Huang, W., Zhang, J., Li, Y., Xing, Z., Guo, L., Jiang, H., & Zhang, J. (2023). High-intensity interval training induces lactylation of fatty acid synthase to inhibit lipid synthesis. BMC Biology, 21(1), 196.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ni, P. S., Ma, S., Wang, Z. Z., He, J. H., Zhang, C. K., Li, B. M., Yu, X. M., & Li, F. H. (2023). Indirect regulation of HIPPO pathway by miRNA mediates high-intensity intermittent exercise to ameliorate aging skeletal muscle function. Scandinavian Journal of Medicine & Science in Sports, 33(6), 834–847.

Article  Google Scholar 

de Mendonça, M., Rocha, K. C., de Sousa, É., Pereira, B. M. V., Oyama, L. M., & Rodrigues, A. C. (2020). Aerobic exercise training regulates serum extracellular vesicle miRNAs linked to obesity to promote their beneficial effects in mice. American Journal of Physiology. Endocrinology and Metabolism, 319(3), E579–E591.

Article  PubMed  Google Scholar 

Androvic, P., Benesova, S., Rohlova, E., Kubista, M., & Valihrach, L. (2022). Small RNA-sequencing for analysis of circulating miRNAs: Benchmark study. The Journal of Molecular Diagnostics: JMD, 24(4), 386–394.

Article  PubMed  CAS  Google Scholar 

Sun, L., & Li, F. H. (2018). Effects of long-term high-intensity interval training on Adiponectin/AMPK signaling pathway and autophagy in skeletal muscle of aged rats. China Sport Science, 38(11), 50–59.

Google Scholar 

Camell, C. D., Günther, P., Lee, A., Goldberg, E. L., Spadaro, O., Youm, Y. H., Bartke, A., Hubbard, G. B., Ikeno, Y., Ruddle, N. H., Schultze, J., & Dixit, V. D. (2019). Aging induces an Nlrp3 inflammasome-dependent expansion of Adipose B cells that impairs metabolic homeostasis. Cell Metabolism, 30(6), 1024–1039.e6.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of cellular senescence. Trends in Cell Biology, 28(6), 436–453.

Article  PubMed  CAS  Google Scholar 

Jang, Y., Kwon, I., Cosio-Lima, L., Wirth, C., Vinci, D. M., & Lee, Y. (2019). Endurance exercise prevents metabolic distress-induced senescence in the hippocampus. Medicine and Science in Sports and Exercise, 51(10), 2012–2024.

Article  PubMed  CAS  Google Scholar 

Benador, I. Y., Veliova, M., Liesa, M., & Shirihai, O. S. (2019). Mitochondria bound to lipid droplets: Where mitochondrial dynamics regulate lipid storage and utilization. Cell Metabolism, 29(4), 827–835.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shaw, C. S., Clark, J. A., & Shepherd, S. O. (2013). HSL and ATGL: The movers and shakers of muscle lipolysis. The Journal of Physiology, 591(24), 6137–6138.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ahmadian, M., Abbott, M. J., Tang, T., Hudak, C. S., Kim, Y., Bruss, M., Hellerstein, M. K., Lee, H. Y., Samuel, V. T., Shulman, G. I., Wang, Y., Duncan, R. E., Kang, C., & Sul, H. S. (2011). Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metabolism, 13(6), 739–748.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li, J., Yi, X., Li, T., Yao, T., Li, D., Hu, G., Ma, Y., Chang, B., & Cao, S. (2022). Effects of exercise and dietary intervention on muscle, adipose tissue, and blood IRISIN levels in obese male mice and their relationship with the beigeization of white adipose tissue. Endocrine Connections, 11(3), e210625.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cheng, C. F., Ku, H. C., & Lin, H. (2018). PGC-1α as a pivotal factor in lipid and metabolic regulation. International journal of Molecular Sciences, 19(11), 3447.

Article  PubMed  PubMed Central  Google Scholar 

Thirupathi, A., da Silva Pieri, B. L., Queiroz, J. A. M. P., Rodrigues, M. S., de Bem Silveira, G., de Souza, D. R., Luciano, T. F., Silveira, P. C. L., & De Souza, C. T. (2019). Strength training and aerobic exercise alter mitochondrial parameters in brown adipose tissue and equally reduce body adiposity in aged rats. Journal of Physiology and Biochemistry, 75(1), 101–108.

Article  PubMed  CAS  Google Scholar 

Wiley, C. D., & Campisi, J. (2021). The metabolic roots of senescence: Mechanisms and opportunities for intervention. Nature Metabolism, 3(10), 1290–1301.

Article  PubMed  PubMed Central  CAS  Google Scholar 

He, C., Bassik, M. C., Moresi, V., Sun, K., Wei, Y., Zou, Z., An, Z., Loh, J., Fisher, J., Sun, Q., Korsmeyer, S., Packer, M., May, H. I., Hill, J. A., Virgin, H. W., Gilpin, C., Xiao, G., Bassel-Duby, R., Scherer, P. E., & Levine, B. (2012). Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 481(7382), 511–515.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen, Q., Cai, J., Li, X., Song, A., Guo, H., Sun, Q., Yang, C., & Yang, P. (2019). Progranulin promotes regeneration of inflammatory periodontal bone defect in rats via anti-inflammation, osteoclastogenic inhibition, and osteogenic promotion. Inflammation, 42(1), 221–234.

Article  PubMed  CAS  Google Scholar 

Wan, J., Zhang, G., Li, X., Qiu, X., Ouyang, J., Dai, J., & Min, S. (2021). Matrix metalloproteinase 3: A promoting and destabilizing factor in the pathogenesis of disease and cell differentiation. Frontiers in Physiology, 12, 663978.

Article  PubMed  PubMed Central  Google Scholar 

Singh, S., Anshita, D., & Ravichandiran, V. (2021). MCP-1: Function, regulation, and involvement in disease. International Immunopharmacology, 101(Pt B), 107598.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Comments (0)

No login
gif