A Computational Approach for Designing a Peptide-Based Acetyl-CoA Synthetase 2 Inhibitor: A New Horizon for Anticancer Development

Xu, H., Luo, J., Ma, G., Zhang, X., Yao, D., Li, M., & Loor, J. J. (2018). Acyl-CoA synthetase short-chain family member 2 (ACSS2) is regulated by SREBP-1 and plays a role in fatty acid synthesis in caprine mammary epithelial cells. Journal of Cellular Physiology, 233(2), 1005–1016.

Article  CAS  PubMed  Google Scholar 

Brown, M. S., & Goldstein, J. L. (1997). The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell, 89(3), 331–340.

Article  CAS  PubMed  Google Scholar 

Moffett, J. R., Arun, P., Ariyannur, P. S., & Namboodiri, A. M. A. (2013). N-Acetylaspartate reductions in brain injury: Impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. Frontiers in Neuroenergetics, 5, 11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, R., Xu, M., Nagati, J., & Garcia, J. A. (2017). Coordinate regulation of stress signaling and epigenetic events by Acss2 and HIF-2 in cancer cells. PLoS ONE, 12(12), e0190241.

Article  PubMed  PubMed Central  Google Scholar 

Huang, Z., Zhang, M., Plec, A. A., Estill, S. J., Cai, L., Repa, J. J., McKnight, S. L., & Tu, B. P. (2018). ACSS2 promotes systemic fat storage and utilization through selective regulation of genes involved in lipid metabolism. Proceedings of the National Academy of Sciences of the United States of America, 115(40), E9499–E9506.

CAS  PubMed  PubMed Central  Google Scholar 

Schug, Z. T., Peck, B., Jones, D. T., Zhang, Q., Grosskurth, S., Alam, I. S., Goodwin, L. M., Smethurst, E., Mason, S., Blyth, K., McGarry, L., James, D., Shanks, E., Kalna, G., Saunders, R. E., Jiang, M., Howell, M., Lassailly, F., Thin, M. Z., & Gottlieb, E. (2015). Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell, 27(1), 57–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moffett, J. R., Puthillathu, N., Vengilote, R., Jaworski, D. M., & Namboodiri, A. M. (2020). Acetate revisited: A key biomolecule at the nexus of metabolism, epigenetics, and oncogenesis - part 2: Acetate and ACSS2 in health and disease. Frontiers in Physiology, 11, 580171.

Article  PubMed  PubMed Central  Google Scholar 

Yoshii, Y., Waki, A., Furukawa, T., Kiyono, Y., Mori, T., Yoshii, H., Kudo, T., Okazawa, H., Welch, M. J., & Fujibayashi, Y. (2009). Tumor uptake of radiolabeled acetate reflects the expression of cytosolic acetyl-CoA synthetase: Implications for the mechanism of acetate PET. Nuclear Medicine and Biology, 36(7), 771–777.

Article  CAS  PubMed  Google Scholar 

Gan, S., Mao, J., Pan, Y., Tang, J., & Qiu, Z. (2021). hsa-miR-15b-5p regulates the proliferation and apoptosis of human vascular smooth muscle cells by targeting the ACSS2/PTGS2 axis. Experimental and Therapeutic Medicine, 22(5), 1208.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mews, P., Donahue, G., Drake, A. M., Luczak, V., Abel, T., & Berger, S. L. (2017). Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature, 546(7658), 381–386.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ling, R., Chen, G., Tang, X., Liu, N., Zhou, Y., & Chen, D. (2022). Acetyl-CoA synthetase 2(ACSS2): a review with a focus on metabolism and tumor development. Discover Oncology, 13(1), 58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, M., Liu, N., Wang, J., Fu, S., Wang, X., & Chen, D. (2022). Acetyl-CoA synthetase 2 as a therapeutic target in tumor metabolism. Cancers (Basel), 14(12), 2896.

Article  CAS  PubMed  Google Scholar 

Kamphorst, J. J., Chung, M. K., Fan, J., & Rabinowitz, J. D. (2014). Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer & Metabolism, 2(1), 23.

Article  Google Scholar 

Yang, X., Shao, F., Shi, S., Feng, X., Wang, W., Wang, Y., Guo, W., Wang, J., Gao, S., Gao, Y., Lu, Z., & He, J. (2019). Prognostic impact of metabolism reprogramming markers Acetyl-CoA synthetase 2 phosphorylation and ketohexokinase-a expression in non-small-cell lung carcinoma. Frontiers in Oncology, 9, 486002.

Article  Google Scholar 

Li, X., Yu, W., Qian, X., Xia, Y., Zheng, Y., Lee, J. H., Li, W., Lyu, J., Rao, G., Zhang, X., Qian, C. N., Rozen, S. G., Jiang, T., & Lu, Z. (2017). Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Molecular Cell, 66(5), 684–697.e9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, X., Lin, S. H., Ren, F., Li, J. T., Chen, J. J., Yao, C. B., Yang, H. B., Jiang, S. X., Yan, G. Q., Wang, D., Wang, Y., Liu, Y., Cai, Z., Xu, Y. Y., Chen, J., Yu, W., Yang, P. Y., & Lei, Q. Y. (2016). Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nature Communications, 7, 11960.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comerford, S. A., Huang, Z., Du, X., Wang, Y., Cai, L., Witkiewicz, A. K., Walters, H., Tantawy, M. N., Fu, A., Manning, H. C., Horton, J. D., Hammer, R. E., McKnight, S. L., & Tu, B. P. (2014). Acetate dependence of tumors. Cell, 159(7), 1591–1602.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller, K. D., Pniewski, K., Perry, C. E., Papp, S. B., Shaffer, J. D., Velasco-Silva, J. N., Casciano, J. C., Aramburu, T. M., Srikanth, Y., Cassel, J., Skordalakes, E., Kossenkov, A. V., Salvino, J. M., & Schug, Z. T. (2021). Targeting ACSS2 with a transition-state mimetic inhibits triple-negative breast cancer growth. Cancer Research, 81(5), 1252–1264.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stine, Z. E., Schug, Z. T., Salvino, J. M., & Dang, C. V. (2022). Targeting cancer metabolism in the era of precision oncology. Nature Reviews. Drug Discovery, 21(2), 141–162.

Article  CAS  PubMed  Google Scholar 

Sabnis, R. W. (2021). Amide-substituted condensed pyridine derivatives as ACSS2 inhibitors for treating cancer. ACS Medicinal Chemistry Letters, 12(12), 1870–1871.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sabnis, R. W. (2021). Novel Substituted Tetrazoles as ACSS2 Inhibitors for Treating Cancer. ACS Medicinal Chemistry Letters, 12(12), 1894–1895.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M., Dearden, J., Gramatica, P., Martin, Y. C., Todeschini, R., Consonni, V., Kuz’min, V. E., Cramer, R., Benigni, R., Yang, C., Rathman, J., Terfloth, L., Gasteiger, J., Richard, A., & Tropsha, A. (2014). QSAR modeling: where have you been? Where are you going to? Journal of Medicinal Chemistry, 57(12), 4977–5010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wager, T. T., Hou, X., Verhoest, P. R., & Villalobos, A. (2010). Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chemical Neuroscience, 1(6), 435–449.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2013). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395.

Article  PubMed  Google Scholar 

Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar, A., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2014). Relationship between a point mutation S97C in CK1δ protein and its affect on ATP-binding affinity. Journal of Biomolecular Structure & Dynamics, 32(3), 394–405.

Article  CAS  Google Scholar 

Gopalakrishnan, C., Kamaraj, B., & Purohit, R. (2014). Mutations in microRNA binding sites of CEP genes involved in cancer. Cell Biochemistry and Biophysics, 70(3), 1933–1942.

Comments (0)

No login
gif