Xu, H., Luo, J., Ma, G., Zhang, X., Yao, D., Li, M., & Loor, J. J. (2018). Acyl-CoA synthetase short-chain family member 2 (ACSS2) is regulated by SREBP-1 and plays a role in fatty acid synthesis in caprine mammary epithelial cells. Journal of Cellular Physiology, 233(2), 1005–1016.
Article CAS PubMed Google Scholar
Brown, M. S., & Goldstein, J. L. (1997). The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell, 89(3), 331–340.
Article CAS PubMed Google Scholar
Moffett, J. R., Arun, P., Ariyannur, P. S., & Namboodiri, A. M. A. (2013). N-Acetylaspartate reductions in brain injury: Impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. Frontiers in Neuroenergetics, 5, 11.
Article CAS PubMed PubMed Central Google Scholar
Chen, R., Xu, M., Nagati, J., & Garcia, J. A. (2017). Coordinate regulation of stress signaling and epigenetic events by Acss2 and HIF-2 in cancer cells. PLoS ONE, 12(12), e0190241.
Article PubMed PubMed Central Google Scholar
Huang, Z., Zhang, M., Plec, A. A., Estill, S. J., Cai, L., Repa, J. J., McKnight, S. L., & Tu, B. P. (2018). ACSS2 promotes systemic fat storage and utilization through selective regulation of genes involved in lipid metabolism. Proceedings of the National Academy of Sciences of the United States of America, 115(40), E9499–E9506.
CAS PubMed PubMed Central Google Scholar
Schug, Z. T., Peck, B., Jones, D. T., Zhang, Q., Grosskurth, S., Alam, I. S., Goodwin, L. M., Smethurst, E., Mason, S., Blyth, K., McGarry, L., James, D., Shanks, E., Kalna, G., Saunders, R. E., Jiang, M., Howell, M., Lassailly, F., Thin, M. Z., & Gottlieb, E. (2015). Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell, 27(1), 57–71.
Article CAS PubMed PubMed Central Google Scholar
Moffett, J. R., Puthillathu, N., Vengilote, R., Jaworski, D. M., & Namboodiri, A. M. (2020). Acetate revisited: A key biomolecule at the nexus of metabolism, epigenetics, and oncogenesis - part 2: Acetate and ACSS2 in health and disease. Frontiers in Physiology, 11, 580171.
Article PubMed PubMed Central Google Scholar
Yoshii, Y., Waki, A., Furukawa, T., Kiyono, Y., Mori, T., Yoshii, H., Kudo, T., Okazawa, H., Welch, M. J., & Fujibayashi, Y. (2009). Tumor uptake of radiolabeled acetate reflects the expression of cytosolic acetyl-CoA synthetase: Implications for the mechanism of acetate PET. Nuclear Medicine and Biology, 36(7), 771–777.
Article CAS PubMed Google Scholar
Gan, S., Mao, J., Pan, Y., Tang, J., & Qiu, Z. (2021). hsa-miR-15b-5p regulates the proliferation and apoptosis of human vascular smooth muscle cells by targeting the ACSS2/PTGS2 axis. Experimental and Therapeutic Medicine, 22(5), 1208.
Article CAS PubMed PubMed Central Google Scholar
Mews, P., Donahue, G., Drake, A. M., Luczak, V., Abel, T., & Berger, S. L. (2017). Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature, 546(7658), 381–386.
Article CAS PubMed PubMed Central Google Scholar
Ling, R., Chen, G., Tang, X., Liu, N., Zhou, Y., & Chen, D. (2022). Acetyl-CoA synthetase 2(ACSS2): a review with a focus on metabolism and tumor development. Discover Oncology, 13(1), 58.
Article CAS PubMed PubMed Central Google Scholar
Liu, M., Liu, N., Wang, J., Fu, S., Wang, X., & Chen, D. (2022). Acetyl-CoA synthetase 2 as a therapeutic target in tumor metabolism. Cancers (Basel), 14(12), 2896.
Article CAS PubMed Google Scholar
Kamphorst, J. J., Chung, M. K., Fan, J., & Rabinowitz, J. D. (2014). Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer & Metabolism, 2(1), 23.
Yang, X., Shao, F., Shi, S., Feng, X., Wang, W., Wang, Y., Guo, W., Wang, J., Gao, S., Gao, Y., Lu, Z., & He, J. (2019). Prognostic impact of metabolism reprogramming markers Acetyl-CoA synthetase 2 phosphorylation and ketohexokinase-a expression in non-small-cell lung carcinoma. Frontiers in Oncology, 9, 486002.
Li, X., Yu, W., Qian, X., Xia, Y., Zheng, Y., Lee, J. H., Li, W., Lyu, J., Rao, G., Zhang, X., Qian, C. N., Rozen, S. G., Jiang, T., & Lu, Z. (2017). Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Molecular Cell, 66(5), 684–697.e9.
Article CAS PubMed PubMed Central Google Scholar
Gao, X., Lin, S. H., Ren, F., Li, J. T., Chen, J. J., Yao, C. B., Yang, H. B., Jiang, S. X., Yan, G. Q., Wang, D., Wang, Y., Liu, Y., Cai, Z., Xu, Y. Y., Chen, J., Yu, W., Yang, P. Y., & Lei, Q. Y. (2016). Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nature Communications, 7, 11960.
Article CAS PubMed PubMed Central Google Scholar
Comerford, S. A., Huang, Z., Du, X., Wang, Y., Cai, L., Witkiewicz, A. K., Walters, H., Tantawy, M. N., Fu, A., Manning, H. C., Horton, J. D., Hammer, R. E., McKnight, S. L., & Tu, B. P. (2014). Acetate dependence of tumors. Cell, 159(7), 1591–1602.
Article CAS PubMed PubMed Central Google Scholar
Miller, K. D., Pniewski, K., Perry, C. E., Papp, S. B., Shaffer, J. D., Velasco-Silva, J. N., Casciano, J. C., Aramburu, T. M., Srikanth, Y., Cassel, J., Skordalakes, E., Kossenkov, A. V., Salvino, J. M., & Schug, Z. T. (2021). Targeting ACSS2 with a transition-state mimetic inhibits triple-negative breast cancer growth. Cancer Research, 81(5), 1252–1264.
Article CAS PubMed PubMed Central Google Scholar
Stine, Z. E., Schug, Z. T., Salvino, J. M., & Dang, C. V. (2022). Targeting cancer metabolism in the era of precision oncology. Nature Reviews. Drug Discovery, 21(2), 141–162.
Article CAS PubMed Google Scholar
Sabnis, R. W. (2021). Amide-substituted condensed pyridine derivatives as ACSS2 inhibitors for treating cancer. ACS Medicinal Chemistry Letters, 12(12), 1870–1871.
Article CAS PubMed PubMed Central Google Scholar
Sabnis, R. W. (2021). Novel Substituted Tetrazoles as ACSS2 Inhibitors for Treating Cancer. ACS Medicinal Chemistry Letters, 12(12), 1894–1895.
Article CAS PubMed PubMed Central Google Scholar
Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M., Dearden, J., Gramatica, P., Martin, Y. C., Todeschini, R., Consonni, V., Kuz’min, V. E., Cramer, R., Benigni, R., Yang, C., Rathman, J., Terfloth, L., Gasteiger, J., Richard, A., & Tropsha, A. (2014). QSAR modeling: where have you been? Where are you going to? Journal of Medicinal Chemistry, 57(12), 4977–5010.
Article CAS PubMed PubMed Central Google Scholar
Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157.
Article CAS PubMed PubMed Central Google Scholar
Wager, T. T., Hou, X., Verhoest, P. R., & Villalobos, A. (2010). Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chemical Neuroscience, 1(6), 435–449.
Article CAS PubMed PubMed Central Google Scholar
Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2013). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395.
Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461.
Article CAS PubMed PubMed Central Google Scholar
Kumar, A., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2014). Relationship between a point mutation S97C in CK1δ protein and its affect on ATP-binding affinity. Journal of Biomolecular Structure & Dynamics, 32(3), 394–405.
Gopalakrishnan, C., Kamaraj, B., & Purohit, R. (2014). Mutations in microRNA binding sites of CEP genes involved in cancer. Cell Biochemistry and Biophysics, 70(3), 1933–1942.
Comments (0)