Patil, P. D., Mahajan, U. B., Patil, K. R., Chaudhari, S., Patil, C. R., Agrawal, Y. O., Ojha, S., & Goyal, S. N. (2017). Past and current perspective on new therapeutic targets for Type-II diabetes. Drug Design, Development and Therapy, 11, 1567–1583.
Article CAS PubMed PubMed Central Google Scholar
Hassanzadeh, V., Mehdinejad, M. H., & Ferrante, M., et al. (2016). Association between polychlorinated biphenyls in the serum and adipose tissue with type 2 diabetes mellitus: a systematic review and meta-analysis. Health Science, 5(9), 13–21.
Riyaphan, J., Pham, D. C., Leong, M. K., & Weng, C. F. (2021). In silico approaches to identify polyphenol compounds as α-glucosidase and α-amylase inhibitors against type-II diabetes. Biomolecules, 11(12), 1877.
Article CAS PubMed PubMed Central Google Scholar
Yamazaki, T., Mimura, I., Tanaka, T., & Nangaku, M. (2021). Treatment of diabetic kidney disease: Current and future. Diabetes & Metabolism Journal, 45(1), 11–26.
Kaur, N., Kumar, V., Nayak, S. K., Wadhwa, P., Kaur, P., & Sahu, S. K., et al. (2021). Alpha-amylase as molecular target for treatment of diabetes mellitus: A comprehensive review. Chemical Biology & Drug Design., 98, 539–560.
Janecek, S., Svensson, B., & MacGregor, E. A. (2014). Alpha-Amylase: An enzyme specificity found in various families of glycoside hydrolases. Cellular and Molecular Life Science, 71(7), 1149–1170.
Nandi, S., & Saxena, M. (2020). Potential inhibitors of protein tyrosine phosphatase (PTP1B) enzyme: Promising target for type-II diabetes mellitus. Current Topics in Medicinal Chemistry, 20(29), 2692–2707.
Article CAS PubMed Google Scholar
Petersen, M. C., & Shulman, G. I. (2018). Mechanisms of insulin action and insulin resistance. Physiological Reviews, 98(4), 2133–2223.
Article CAS PubMed PubMed Central Google Scholar
O’Brien, M. J., Karam, S. L., Wallia, A., Kang, R. H., Cooper, A. J., Lancki, N., Moran, M. R., Liss, D. T., Prospect, T. A., & Ackermann, R. T. (2018). Association of second-line Antidiabetic medications with cardiovascular events among insured adults with Type 2 diabetes. JAMA Network Open, 1, 186125.
Patil, S. M., Martiz, R. M., Satish, A. M., Shbeer, A. M., Ageel, M., AI- Ghorbani, M., Ranganatha, 5th, L., Parameswaran, S., & Ramu, R. (2022). Discovery of novel coumarin derivatives as potential dual inhibitors against α-glucosidase and α-amylase for the management of post-prandial hyperglycemia via molecular modelling approaches. Molecules, 27(12), 3888.
Article CAS PubMed PubMed Central Google Scholar
Hostalek, U., Gwilt, M., & Hildemann, S. (2015). Therapeutic use of metformin in prediabetes and diabetes prevention. Drugs, 75(10), 1071–1094.
Article CAS PubMed PubMed Central Google Scholar
Afifi, A. F., Kamel, E. M., Khalil, A. A., Foaad, M. A., Fawziand, E. M., & Houseny, M. (2008). Purification and characterization of a-amylase from penicilliumolsonii under the effect of some antioxidant vitamins. Global Journal of Biotechnology and Biochemistry, 3(1), 14–12.
Rasouli, H., Hosseini-Ghazvini, S. M., Adibi, H., & Khodarahmi, R. (2017). Differential alpha-amylase/alpha-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct, 8, 1942–1954.
Article CAS PubMed Google Scholar
Kar, A., Choudhary, B. K., & Bandyopadhyay, N. G. (2003). Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. Journal of Ethnopharmacology, 84, 105–108.
Chiasson, J. L., Josse, R. G., Gomis, R., Hanefeld, M., Karasik, A., & Laakso, M. (2002). Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet, 3(9), 2072–2077.
Khan, F., & Kumar, A. (2021). An integrative docking and simulation-based approach towards the development of epitope-based vaccine against enterotoxigenic Escherichia coli. Network Modeling and Analysis in Health Informatics Bioinform, 10(1), 11.
Khan, F., Srivastava, V., & Kumar, A. (2018). Epitope based peptide prediction from proteome of enterotoxigenic E.coli. International Journal of Peptide Research Therapeutics, 24, 323–336.
Bian, Y., & Xie, X. S. (2018). Computational fragment-based drug design: Current trends, strategies, and applications. AAPS Journal, 20(3), 59.
Chenafa, H., Fouzia, M., Ismail, D., Radja, A., Said, G., & Abdelhak, N. (2022). In silico design of enzyme α-amylase and α-glucosidase inhibitors using molecular docking, molecular dynamic, conceptual DFT investigation and pharmacophore modelling. Journal of Biomolecular Structure and Dynamics, 40(14), 6308–6329.
Article CAS PubMed Google Scholar
Ravindranth, P. A., Forli, S., Goodsell, D. S., Olson, A. J., & Sanner, M. F. (2015). AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility. PLoS Computational Biology, 11(12), e1004586.
Maurus, R., Begum, A., Williams, L. K., Fredriksen, J. R., Zhang, R., Withers, S. G., & Brayer, G. D. (2008). Alternative catalytic anions differentially modulate human alpha-amylase activity and specificity. Biochemistry, 47(11), 3332–3344.
Article CAS PubMed Google Scholar
Kemmish, H., Fasnacht, M., & Yan, L. (2017). Fully automated antibody structure prediction using BIOVIA tools: Validation study. PLoS One, 12(5), e0177923.
Article PubMed PubMed Central Google Scholar
Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., & Liang, J. (2006). CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research, 34, W116–W118.
Article CAS PubMed PubMed Central Google Scholar
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25.
Yamaguchi, M., Saji, T., Mita, S., Kulmatycki, K., He, Y. L., Furihata, K., & Sekiguchi, K. (2013). Pharmacokinetic and pharmacodynamic interaction of vildagliptin and voglibose in Japanese patients with type 2 diabetes. International Journal of Clinical Pharmacology and Therapeutics, 51(8), 641–651.
Article CAS PubMed Google Scholar
Ahr, H. J., Boberg, M., Brendel, E., Krause, H. P., & Steinke, W. (1997). Pharmacokinetics of miglitol. Absorption, distribution, metabolism, and excretion following administration to rats, dogs, and man. Arzneimittelforschung, 47(6), 734–745.
Morphy, R. (2006). The influence of target family and functional activity on the physicochemical properties of pre-clinical compounds. Journal of Medicinal Chemistry, 49, 2969–2978.
Article CAS PubMed Google Scholar
Shih, H. P., Zhang, X., & Aronov, A. M. (2018). Drug discovery effectiveness from the standpoint of therapeutic mechanisms and indications. Nat Rev Drug Discovery, 17, 19–33.
Article CAS PubMed Google Scholar
Karami, T. K., Hailu, S., Feng, S., Graham, R., & Gukasyan, H. J. (2022). Eyes on Lipinski’s rule of five: A new “rule of thumb” for physicochemical design space of ophthalmic drugs. Journal Ocular Pharmacology and Therapeutics, 38(1), 43–55.
Article CAS PubMed Google Scholar
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 16, 2785–2791.
Hughes, T. B., & Swamidass, S. J. (2017). Deep learning to predict the formation of quinone species in drug metabolism. Chemical Research in Toxicology, 30(2), 642–656.
Article CAS PubMed PubMed Central Google Scholar
Hughes, T. B., Dang, N. L., Miller, G. P., & Swamidass, S. J. (2016). Modeling reactivity to biological macromolecules with a deep multitask network. ACS Central Science, 2(8), 529–537.
Comments (0)