Okobi, O. E., Udoete, I. O., Fasehun, O. O., Okobi, T., Evbayekha, E. O., Ekabua, J. J., Elukeme, H., Ebong, I. L., Ajayi, O. O., Olateju, I. V., Taiwo, A., Anaya, I. C., Omole, J. A., Nkongho, M. B., Ojinnaka, U., Ajibowo, A. O., Ogbeifun, O. E., Ugbo, O. O., Okorare, O., Akinsola, Z., Olusoji, R. A., Amanze, I. O., Nwafor, J. N., Ukoha, N. A., & Elimihele, T. A. (2021). A review of four practice guidelines of inflammatory bowel disease. Cureus, 13(8), e16859.
PubMed PubMed Central Google Scholar
Feuerstein, J. D., Moss, A. C. & Farraye, F. A. (2019). Ulcerative colitis. Mayo Clinic Proceedings, 94(7), 1357–1373.
Ungaro, R., Mehandru, S., Allen, P. B., Peyrin-Biroulet, L., & Colombel, J. F. (2017). Ulcerative colitis. Lancet, 389(10080), 1756–1770.
Wu, M., Li, P., An, Y., Ren, J., Yan, D., Cui, J., Li, D., Li, M., Wang, M. & Zhong, G. (2019). Phloretin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice by regulating the gut microbiota. Pharmacological Research, 150, 104489.
Article CAS PubMed Google Scholar
Engel, F., Berens, S., Gauss, A., Schaefert, R., Eich, W. & Tesarz, J. (2021). Higher levels of psychological burden and alterations in personality functioning in Crohn’s Disease and ulcerative colitis. Frontiers in Psychology, 12, 671493.
Article PubMed PubMed Central Google Scholar
Wei, S. C., Sollano, J., Hui, Y. T., Yu, W., Santos Estrella, P. V., Llamado, L. J. Q. & Koram, N. (2021). Epidemiology, burden of disease, and unmet needs in the treatment of ulcerative colitis in Asia. Expert Review of Gastroenterology & Hepatology, 15(3), 275–289.
Kawalec, P.(2016). Indirect costs of inflammatory bowel diseases: Crohn’s disease and ulcerative colitis. A systematic review. Archives of Medical Science, 12(2), 295–302.
Article PubMed PubMed Central Google Scholar
Sehgal, P., Colombel, J. F., Aboubakr, A., & Narula, N. (2018). Systematic review: safety of mesalazine in ulcerative colitis. Aliment Pharmacol Ther, 47(12), 1597–1609.
Article CAS PubMed Google Scholar
Tsusaka, T., Makino, B., Ohsawa, R., & Ezura, H. (2020). Evaluation of heritability of β-eudesmol/hinesol content ratio in Atractylodes lancea De Candolle. Hereditas, 157(1), 020–00123.
Han, J., Zhu, X., Gao, Z., Xiao, Y., Zhang, J., Wang, P., Fang, J., Li, Y., Zhu, Y., Jin, N., Lu, H., Lin, D. & Liu, W. (2023). Antiviral effects of Atractyloside A on the influenza B virus (Victoria strain) infection. Frontiers in Microbiology, 13, 1067725.
Article PubMed PubMed Central Google Scholar
Hossen, M. J., Amin, A., Fu, X. Q., Chou, J. Y., Wu, J. Y., Wang, X. Q., Chen, Y. J., Wu, Y., Li, J., Yin, C. L., Liang, C., Chou, G. X. & Yu, Z. L. (2021). The anti-inflammatory effects of an ethanolic extract of the rhizome of Atractylodes lancea, involves Akt/NF-κB signaling pathway inhibition. Journal of Ethnopharmacology, 277, 114183.
Article CAS PubMed Google Scholar
Wu, J., Xu, R., Lu, J., Liu, W., Yu, H., Liu, M., Li, J., Yin, M., Peng, H., & Zha, L. (2021). Molecular cloning and functional characterization of two squalene synthase genes in Atractylodes lancea. Planta, 255(1), 021–03797.
Masuda, Y., Kadokura, T., Ishii, M., Takada, K. & Kitajima, J. (2015). Hinesol, a compound isolated from the essential oils of Atractylodes lancea rhizome, inhibits cell growth and induces apoptosis in human leukemia HL-60 cells. Journal of Natural Medicines, 69(3), 332–339.
Article CAS PubMed Google Scholar
Guo, W., Liu, S., Ju, X., Du, J., Xu, B., Yuan, H., Qin, F. & Li, L. (2019). The antitumor effect of hinesol, extract from Atractylodes lancea (Thunb.) DC. by proliferation, inhibition, and apoptosis induction via MEK/ERK and NF-κB pathway in non-small cell lung cancer cell lines A549 and NCI-H1299. Journal of Cellular Biochemistry, 120(11), 18600–18607.
Article CAS PubMed Google Scholar
Satoh, K., Nagai, F. & Kano, I. (2000). Inhibition of H+,K+ -ATPase by hinesol, a major component of So-jutsu, by interaction with enzyme in the E1 state. Biochemical Pharmacology, 59(7), 881–886.
Article CAS PubMed Google Scholar
Dai, Y., Lu, Q., Li, P., Zhu, J., Jiang, J., Zhao, T., Hu, Y., Ding, K. & Zhao, M. (2023). Xianglian Pill attenuates ulcerative colitis through TLR4/MyD88/NF-κB signaling pathway. Journal of Ethnopharmacology, 300, 115690.
Article CAS PubMed Google Scholar
Yan, Y. X., Shao, M. J., Qi, Q., Xu, Y. S., Yang, X. Q., Zhu, F. H., He, S. J., He, P. L., Feng, C. L., Wu, Y. W., Li, H., Tang, W. & Zuo, J. P. (2018). Artemisinin analogue SM934 ameliorates DSS-induced mouse ulcerative colitis via suppressing neutrophils and macrophages. Acta Pharmacologica Sinica, 39(10), 1633–1644.
Article CAS PubMed PubMed Central Google Scholar
Molodecky, N. A., Soon, I. S., Rabi, D. M., Ghali, W. A., Ferris, M., Chernoff, G., Benchimol, E. I., Panaccione, R., Ghosh, S., Barkema, H. W., & Kaplan, G. G. (2012). Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology, 142(1), 46–54.
Ananthakrishnan, A. N.(2015). Epidemiology and risk factors for IBD. Nature Reviews Gastroenterology & Hepatology, 12(4), 205–217.
Li, X., Ling, Y., Huang, X., Zhou, T., Wu, S., Zhang, S., Zhou, H., Kang, Y., Wang, L., Wang, X., & Yin, W. (2023). Rosa roxburghii tratt fruit extract prevents dss-induced ulcerative colitis in mice by modulating the gut microbiota and the IL-17 signaling pathway. Nutrients, 15(21), 4560.
Article CAS PubMed PubMed Central Google Scholar
Hu, X., He, X., Peng, C., He, Y., Wang, C., Tang, W., Chen, H., Feng, Y., Liu, D., Li, T., & He, L. (2022). Improvement of ulcerative colitis by aspartate via RIPK pathway modulation and gut microbiota composition in mice. Nutrients, 14(18), 3707.
Article CAS PubMed PubMed Central Google Scholar
Dieleman, L. A., Ridwan, B. U., Tennyson, G. S., Beagley, K. W., Bucy, R. P., & Elson, C. O. (1994). Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology, 107(6), 1643–1652.
Article CAS PubMed Google Scholar
Huang, S., Fu, Y., Xu, B., Liu, C., Wang, Q., Luo, S., Nong, F., Wang, X., Chen, J., Zhou, L., & Luo, X. (2020). Wogonoside alleviates colitis by improving intestinal epithelial barrier function via the MLCK/pMLC2 pathway. Phytomedicine, 68, 153179.
Article CAS PubMed Google Scholar
Katinios, G., Casado-Bedmar, M., Walter, S. A., Vicario, M., González-Castro, A. M., Bednarska, O., Söderholm, J. D., Hjortswang, H. & Keita, Å. V. (2020). Increased colonic epithelial permeability and mucosal eosinophilia in ulcerative colitis in remission compared with irritable bowel syndrome and health. Inflammatory Bowel Disease, 26(7), 974–984.
Qiu, S., Li, P., Zhao, H. & Li, X. (2020). Maresin 1 alleviates dextran sulfate sodium-induced ulcerative colitis by regulating NRF2 and TLR4/NF-kB signaling pathway. International Immunopharmacology, 78, 106018.
Article CAS PubMed Google Scholar
Nighot, P., Al-Sadi, R., Rawat, M., Guo, S., Watterson, D. M. & Ma, T. (2015). Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 309(12), 29.
Jodeleit, H., Milchram, L., Soldo, R., Beikircher, G., Schönthaler, S., Al-Amodi, O., Wolf, E., Beigel, F., Weinhäusel, A., Siebeck, M., & Gropp, R. (2020). Autoantibodies as diagnostic markers and potential drivers of inflammation in ulcerative colitis. PLoS One, 15(2), e0228615.
Article CAS PubMed PubMed Central Google Scholar
Zaidi, D., Huynh, H. Q., Carroll, M. W., Baksh, S. & Wine, E. (2018). Tumor necrosis factor α-induced protein 3 (A20) is dysregulated in pediatric Crohn disease. Clinical and Experimental Gastroenterology, 11, 217–231.
Article CAS PubMed PubMed Central Google Scholar
Pizarro, T. T., Michie, M. H., Bentz, M., Woraratanadharm, J., Smith, M. F., Foley, E., Moskaluk, C. A., Bickston, S. J. & Cominelli, F. (1999). IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: expression and localization in intestinal mucosal cells. Journal of Immunology, 162(11), 6829–6835.
Wędrychowicz, A., Tomasik, P., Zając, A. & Fyderek, K. (2018). Prognostic value of assessment of stool and serum IL-1β, IL-1ra and IL-6 concentrations in children with active and inactive ulcerative colitis. Archives of Medical Science, 1, 107–114.
Comments (0)