American Cancer Society (ACS). Cancer Statistics Center. http://cancerstatisticscenter.cancer.org. Accessed 24 June 2022.
Lohitesh, K., Chowdhury, R. & Mukherjee, S. (2018). Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell International, 18(44), 44. https://doi.org/10.1186/s12935-018-0538-7.
Article CAS PubMed PubMed Central Google Scholar
Huang, A., Yang, X. R., Chung, W. Y., Dennison, A. R. & Zhou, J. (2020). Targeted therapy for hepatocellular carcinoma. Signal Transduction and Targeted Therapy, 5, 146. https://doi.org/10.1038/s41392-020-00264-x.
Article PubMed PubMed Central Google Scholar
Mao, B., Hu, F., Cheng, J., Wang, P., Xu, M., Yuan, F., Meng, S., Wang, Y., Yuan, Z., & Bi, W. (2014). SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma. Oncogene, 33(11), 1468–1474. https://doi.org/10.1038/onc.2013.88.
Article CAS PubMed Google Scholar
Ayob, A. Z. & & Ramasamy, T. S. (2018). Cancer stem cells as key drivers of tumour progression. Journal of Biomedical Science, 25(1), 20. https://doi.org/10.1186/s12929-018-0426-4.
Article CAS PubMed PubMed Central Google Scholar
Wong, M. M., Chan, H. Y., Aziz, N. A., Ramasamy, T. S., Bong, J. J., Ch’ng, E. S., Armon, S., Peh, S. C. & Teow, S. Y. (2021). Interplay of autophagy and cancer stem cells in hepatocellular carcinoma. Molecular Biology Reports, 48(4), 3695–3717. https://doi.org/10.1007/s11033-021-06334-9.
Article CAS PubMed Google Scholar
Ong, A. L. C. & Ramasamy, T. S. (2018). Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Research Reviews, 43, 64–80. https://doi.org/10.1016/j.arr.2018.02.004.
Article CAS PubMed Google Scholar
Chen, J., Zhang, B., Wong, N., Lo, A. W., To, K. F., Chan, A. W., Ng, M. H., Ho, C. Y., Cheng, S. H., Lai, P. B., Yu, J., Ng, H. K., Ling, M. T., Huang, A. L., Cai, X. F. & Ko, B. C. (2011). Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Research, 71(12), 4138–4149. https://doi.org/10.1158/0008-5472.CAN-10-4274.
Article CAS PubMed Google Scholar
Jang, K. Y., Noh, S. J., Lehwald, N., Tao, G. Z., Park, H. S., Moon, W. S., Felsher, D. W., & Sylvester, K. G. (2012). SIRT1 and c-Myc promote liver tumor cell survival and predict poor survival of human hepatocellular carcinomas. Plos One, 7(9), e45119. https://doi.org/10.1371/journal.pone.0045119.
Article ADS CAS PubMed PubMed Central Google Scholar
Molla, M. D., Dessie, G., Akalu, Y. & Ayelign, B. (2020). Hepatocellular expression of SIRT1 and its effect on hepatocellular carcinoma progression: A future therapeutic perspective. International Journal of Hepatology, 2020, 2374615. https://doi.org/10.1155/2020/2374615.
Article CAS PubMed PubMed Central Google Scholar
Hao, C., Zhu, P. X., Yang, X., Han, Z. P., Jiang, J. H., Zong, C., Zhang, X. G., Liu, W. T., Zhao, D. Q., Fan, T. T., Zhang, L., & Wei, X. L. (2014). Overexpression of SIRT1 promotes metastasis through epithelial-mesenchymal transition in hepatocellular carcinoma. BMC Cancer, 14, 978 https://doi.org/10.1186/1471-2407-14-978.
Article CAS PubMed PubMed Central Google Scholar
Farcas, M., Gavrea, A. A., Gulei, D., Ionescu, C., Irimie, A., Catana, C. S. & Berindan-Neagoe, I. (2019). SIRT1 in the development and treatment of hepatocellular carcinoma. Frontiers in Nutrition, 6, 148. https://doi.org/10.3389/fnut.2019.00148.
Article CAS PubMed PubMed Central Google Scholar
Song, S., Luo, M., Song, Y., Liu, T., Zhang, H. & Xie, Z. (2014). Prognostic role of SIRT1 in hepatocellular carcinoma. Journal of College of Physicians and Surgeons Pakistan, 24, 849–854.
An, Y., Wang, B., Wang, X., Dong, G., Jia, J. & Yang, Q. (2020). SIRT1 inhibits chemoresistance and cancer stemness of gastric cancer by initiating an AMPK/FOXO3 positive feedback loop. Cell Death and Disease, 11, 115. https://doi.org/10.1038/s41419-020-2308-4.
Article PubMed PubMed Central Google Scholar
Mvunta, D. H., Miyamoto, T., Asaka, R., Yamada, Y., Ando, H., Higuchi, S., Ida, K., Kashima, H. & Shiozawa, T. (2017). SIRT1 regulates the chemoresistance and invasiveness of ovarian carcinoma cells. Translational Oncology, 10(4), 621–631. https://doi.org/10.1016/j.tranon.2017.05.
Article PubMed PubMed Central Google Scholar
Wang, Y. Z., Zeng, J., Wu, W. P., Xie, S. D., Yu, H. T., Li, G. L., Zhu, T., Li, F. Y., Lu, J., Wang, G. Y., Xie, X. Y. & Zhang, J. (2019). Nicotinamide N-methyltransferase enhances chemoresistance in breast cancer through SIRT1 protein stabilization. Breast Cancer Research, 21, 64. https://doi.org/10.1186/s13058-019-1150-z.
Article CAS PubMed PubMed Central Google Scholar
Awi, N. J., Yap, H. Y., Armon, S., Low, J. S. H., Peh, K. B., Peh, S. C., Lee, C. S. & & Teow, S. Y. (2021). Association between autophagy and KRAS mutation with clinicopathological variables in colorectal cancer patients. Malaysian Journal of Pathology, 43(2), 269–279.
Sheng, J., Qin, H., Zhang, K., Li, B. & Zhang, X. (2018). Targeting autophagy in chemotherapy-resistant of hepatocellular carcinoma. American Journal of Cancer Research, 8(3), 354–365.
CAS PubMed PubMed Central Google Scholar
Wu, Y., Zhang, J. & Li, Q. (2021). Autophagy, an accomplice or antagonist of drug resistance in HCC?. Cell Death and Disease, 12(3), 266. https://doi.org/10.1038/s41419-021-03553-7.
Article CAS PubMed PubMed Central Google Scholar
De Gregorio, E., Colell, A., Morales, A. & Marí, M. (2020). Relevance of SIRT1-NF-κB axis as therapeutic target to ameliorate inflammation in liver disease. International Journal of Molecular Sciences, 21(11), 3858. https://doi.org/10.3390/ijms21113858.
Article CAS PubMed PubMed Central Google Scholar
Kauppinen, A., Suuronen, T., Ojala, J., Kaarniranta, K., & Salminen, A. (2013). Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal, 25(10), 1939–1948. https://doi.org/10.1016/j.cellsig.2013.06.007.
Article CAS PubMed Google Scholar
Verzella, D., Pescatore, A., Capece, D., Vecchiotti, D., Ursini, M. V., Franzoso, G., Alesse, E. & Zazzeroni, F. (2020). Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death and Disease, 11(3), 210. https://doi.org/10.1038/s41419-020-2399-y.
Article PubMed PubMed Central Google Scholar
Izadiyan, Z., Shameli, K., Teow, S. Y., Yusefi, M., Kia, P., Rasouli, E. & Tareq, M. A. (2021). Anticancer activity of 5-fluorouracil-loaded nanoemulsions containing Fe3O4/Au core-shell nanoparticles. Journal of Molecular Structure, 1245, 131075. https://doi.org/10.1016/j.molstruc.2021.131075.
Yusefi, M., Chan, H. Y., Teow, S. Y., Kia, P., Soon, M. L. K., Che Sidik, N. A., & Shameli, K. (2021). 5-fluorouracil encapsulated chitosan-cellulose fiber bionanocomposites: Synthesis, characterization and in vitro analysis towards colorectal cancer cells. Nanomaterials, 11(7), 1691. https://doi.org/10.3390/nano11071691.
Article CAS PubMed PubMed Central Google Scholar
Yusefi, M., Soon, M. L. K., Shameli, K., Teow, S. Y., Ali, R. R., Siew, K. K., Chan, H. Y., Wong, M. M. T., Lim, W. L. & Kuca, K. (2021). 5-Fluorouracil loaded magnetic cellulose bionanocomposites for potential colorectal cancer treatment. Carbohydrate Polymers, 273, 118523. https://doi.org/10.1016/j.carbpol.2021.118523.
Article CAS PubMed Google Scholar
Yusefi, M., Soon, M. L. K., Teow, S. Y., Monchouguy, E. I., Neerooa, B. N. H. M., Izadiyan, Z., Jahangirian, H., Rafiee-Moghaddam, R., Webster, T. J. & Shameli, K. (2022). Fabrication of cellulose nanocrystals as potential anticancer drug delivery systems for colorectal cancer treatment. International Journal of Biological Macromolecules, 199, 372–385. https://doi.org/10.1016/j.ijbiomac.2021.12.189.
Article CAS PubMed Google Scholar
Mohr, L., Carceles-Cordon, M., Woo, J., Cordon-Cardo, C., Domingo-Domenech, J. & Rodriguez-Bravo, V. (2017). Generation of prostate cancer cell models of resistance to the anti-mitotic agent docetaxel. Journal of Visualized Experiments, 127, 56327. https://doi.org/10.3791/56327.
Verslype, C., van Malenstein, H., Dekervel, J., Windmolders, P., Libbrecht, L., Eijsden, R., Nevens, F., van Pelt, J. (2012) Resistance development after long-term sorafenib exposure in hepatocellular cancer cell lines and risk of rebound growth and epithelial to mesenchymal transition. Journal of Clinical Oncology, 30(4), 216. https://doi.org/10.1200/jco.2012.30.4_suppl.216.
He, C., Dong, X., Zhai, B., Jiang, X., Dong, D., Li, B., Jiang, H., Xu, S., & Sun, X. (2015). MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget, 6(30), 28867–28881. https://doi.org/10.18632/oncotarget.4814.
Article PubMed PubMed Central Google Scholar
Tang, W., Chen, Z., Zhang, W., Cheng, Y., Zhang, B., Wu, F., Wang, Q., Wang, S., Rong, D., Reiter, F. P., De Toni, E. N. & Wang, X. (2020). The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduction and Targeted Therapy, 5(1), 87. https://doi.org/10.1038/s41392-020-0187-x.
Article PubMed PubMed Central Google Scholar
Wang, H., Qian, Z., Zhao, H., Zhang, X., Che, S., Zhang, H., Shang, H., Bao, J., Hao, C., Liu, J. & Li, Z. (2015). CSN5 silencing reverses sorafenib resistance of human hepatocellular carcinoma HepG2 cells. Molecular Medicine Reports, 12(3), 3902–3908. https://doi.org/10.3892/mmr.2015.3871.
Article CAS PubMed Google Scholar
Chow, A. K., Ng, L., Lam, C. S., Wong, S. K., Wan, T. M., Cheng, N. S., Yau, T. C., Poon, R. T., & Pang, R. W. (2013). The Enhanced metastatic potential of hepatocellular carcinoma (HCC) cells with sorafenib resistance. PloS One, 8(11), e78675. https://doi.org/10.1371/journal.pone.0078675.
Comments (0)