KIT mutations and expression: current knowledge and new insights for overcoming IM resistance in GIST

Yarden Y, et al. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 1987;6(11):3341–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mol CD, et al. Structure of a c-kit product complex reveals the basis for kinase transactivation. J Biol Chem. 2003;278(34):31461–4.

Article  CAS  PubMed  Google Scholar 

Pathania S, Pentikäinen OT, Singh PK. A holistic view on c-Kit in cancer: Structure, signaling, pathophysiology and its inhibitors. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188631.

Lemmon MA, Ferguson KM. A new twist in the transmembrane signaling tool-kit. Cell. 2007;130(2):213–5.

Article  CAS  PubMed  Google Scholar 

Meng D, Carvajal RD. KIT as an Oncogenic Driver in Melanoma: An Update on Clinical Development. Am J Clin Dermatol. 2019;20(3):315–23.

Article  PubMed  Google Scholar 

Zsebo KM, et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell. 1990;63(1):213–24.

Article  CAS  PubMed  Google Scholar 

Liang J, et al. The C-kit receptor-mediated signal transduction and tumor-related diseases. Int J Biol Sci. 2013;9(5):435–43.

Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

Tilayov T, et al. Engineering Stem Cell Factor Ligands with Different c-Kit Agonistic Potencies. Molecules. 2020;25(20):4850.

Hirota S, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science (New York, NY). 1998;279(5350):577–80.

Article  ADS  CAS  PubMed  Google Scholar 

Lennartsson J, Ronnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev. 2012;92(4):1619–49.

Article  CAS  PubMed  Google Scholar 

Flavahan WA, et al. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. Nature. 2019;575(7781):229–33.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Blay J-Y, et al. Gastrointestinal stromal tumours. Nat Rev Dis Primers. 2021;7(1):22.

Article  PubMed  Google Scholar 

Heinrich MC, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299(5607):708–10.

Article  ADS  CAS  PubMed  Google Scholar 

Al-Share B, et al. Gastrointestinal stromal tumor: a review of current and emerging therapies. Cancer Metastasis Rev. 2021;40(2):625–41.

Article  CAS  PubMed  Google Scholar 

Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer. 2011;11(12):865–78.

Article  CAS  PubMed  Google Scholar 

Tsai M, Valent P, Galli SJ. KIT as a master regulator of the mast cell lineage. Journal of Allergy and Clinical Immunology. 2022;149(6):1845–54.

Article  CAS  PubMed  Google Scholar 

Zook P, et al. Combination of Imatinib Mesylate and AKT Inhibitor Provides Synergistic Effects in Preclinical Study of Gastrointestinal Stromal Tumor. Clin Cancer Res. 2017;23(1):171–80.

Article  CAS  PubMed  Google Scholar 

Neiswender JV, et al. KIT Suppresses BRAF(V600E)-Mutant Melanoma by Attenuating Oncogenic RAS/MAPK Signaling. Cancer Res. 2017;77(21):5820–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao R, et al. PD-1/PD-L1 blockade rescue exhausted CD8+T cells in gastrointestinal stromal tumours via the PI3K/Akt/mTOR signalling pathway. Cell Prolif. 2019;52(3):e12571.

Blay J-Y, et al. Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21(7):923–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poveda A, et al. GEIS guidelines for gastrointestinal sarcomas (GIST). Cancer Treat Rev. 2017;55:107–19.

Article  PubMed  Google Scholar 

Klug LR, et al. New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nat Rev Clin Oncol. 2022;19(5):328–41.

Article  PubMed  Google Scholar 

Di Vito A, et al. The multifaceted landscape behind imatinib resistance in gastrointestinal stromal tumors (GISTs): A lesson from ripretinib. Pharmacol Ther. 2023;248:108475.

Liegl B, et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol. 2008;216(1):64–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serrano C, George S. Gastrointestinal Stromal Tumor: Challenges and Opportunities for a New Decade. Clin Cancer Res. 2020;26(19):5078–85.

Article  CAS  PubMed  Google Scholar 

Obata Y, et al. Golgi retention and oncogenic KIT signaling via PLCgamma2-PKD2-PI4KIIIbeta activation in gastrointestinal stromal tumor cells. Cell Rep. 2023;42(9):113035–113035.

Article  CAS  PubMed  Google Scholar 

Arock M, et al. Clinical impact and proposed application of molecular markers, genetic variants, and cytogenetic analysis in mast cell neoplasms: Status 2022. Journal of Allergy and Clinical Immunology. 2022;149(6):1855–65.

Article  CAS  PubMed  Google Scholar 

Nannini M, et al. Integrated genomic study of quadruple-WT GIST (KIT/PDGFRA/SDH/RAS pathway wild-type GIST). Bmc Cancer. 2014;14:685.

Schaefer I-M, Marino-Enriquez A, Fletcher JA. What is New in Gastrointestinal Stromal Tumor? Adv Anat Pathol. 2017;24(5):259–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishida T, et al. The standard diagnosis, treatment, and follow-up of gastrointestinal stromal tumors based on guidelines. Gastric Cancer. 2016;19(1):3–14.

Article  MathSciNet  CAS  PubMed  Google Scholar 

Theou N, et al. High expression of both mutant and wild-type alleles of c-kit in gastrointestinal stromal tumors. Biochim Biophys Acta. 2004;1688(3):250–6.

Article  CAS  PubMed  Google Scholar 

Lai S, et al. KIT over-expression by p55PIK-PI3K leads to Imatinib-resistance in patients with gastrointestinal stromal tumors. Oncotarget. 2016;7(2):1367–79.

Article  PubMed  Google Scholar 

Miettinen M, Sobin LH, Sarlomo-Rikala M. Immunohistochemical spectrum of GISTs at different sites and their differential diagnosis with a reference to CD117 (KIT). Mod Pathol. 2000;13(10):1134–42.

Article  CAS  PubMed  Google Scholar 

Joensuu H, Hohenberger P, Corless CL. Gastrointestinal stromal tumour. Lancet. 2013;382(9896):973–83.

Article  CAS  PubMed  Google Scholar 

Hemming ML, et al. HAND1 and BARX1 Act as Transcriptional and Anatomic Determinants of Malignancy in Gastrointestinal Stromal Tumor. Clin Cancer Res. 2021;27(6):1706–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guler B, et al. Histopathological Features of Gastrointestinal Stromal Tumors and the Contribution of DOG1 Expression to the Diagnosis. Balkan Med J. 2015;32(4):388–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foo WC, Liegl-Atzwanger B, Lazar AJ. Pathology of gastrointestinal stromal tumors. Clinical medicine insights Pathology. 2012;5:23–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noma K, et al. Effiects of imatinib vary with the types of KIT-mutation in gastrointestinal stromal tumor cell lines. Oncol Rep. 2005;14(3):645–50.

CAS  PubMed  Google Scholar 

Tarn C, et al. Therapeutic effect of imatinib in gastrointestinal stromal tumors: AKT signaling dependent and independent mechanisms. Can Res. 2006;66(10):5477–86.

Article  CAS  Google Scholar 

Tuveson DA, et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene. 2001;20(36):5054–8.

Article  CAS  PubMed  Google Scholar 

Chi HT, et al. All-trans retinoic acid inhibits KIT activity and induces apoptosis in gastrointestinal stromal tumor GIST-T1 cell line by affecting on the expression of survivin and Bax protein. J Exp Clin Cancer Res. 2010;29(1):165.

Taguchi T, et al. Conventional and molecular cytogenetic characterization of a new human cell line, GIST-T1, established from gastrointestinal stromal tumor. Lab Invest. 2002;82(5):663–5.

Article  PubMed 

Comments (0)

No login
gif