Extracellular vesicles from UTX-knockout endothelial cells boost neural stem cell differentiation in spinal cord injury

National Spinal Cord Injury Statistical Center (Birmingham, AL). Spinal Cord Injury (SCI) 2016 facts and figures at a glance. J Spinal Cord Med. 2016;39(4):493–4.

Article  Google Scholar 

Wu F, Liu L, Zhou H. Endothelial cell activation in central nervous system inflammation. J Leukoc Biol. 2017;101(5):1119–32.

Article  CAS  PubMed  Google Scholar 

Fan B, Wei Z, Yao X, Shi G, Cheng X, Zhou X, et al. Microenvironment imbalance of spinal cord injury. Cell Transplant. 2018;27(6):853–66.

Article  PubMed  PubMed Central  Google Scholar 

Sabelstrom H, Stenudd M, Frisen J. Neural stem cells in the adult spinal cord. Exp Neurol. 2014;260:44–9.

Article  PubMed  Google Scholar 

Gregoire CA, Goldenstein BL, Floriddia EM, Barnabe-Heider F, Fernandes KJ. Endogenous neural stem cell responses to stroke and spinal cord injury. Glia. 2015;63(8):1469–82.

Article  PubMed  Google Scholar 

Yang H, Lu P, McKay HM, Bernot T, Keirstead H, Steward O, et al. Endogenous neurogenesis replaces oligodendrocytes and astrocytes after primate spinal cord injury. J Neurosci. 2006;26(8):2157–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. 2006;7(8):617–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wurmser AE, Palmer TD, Gage FH. Neuroscience. Cellular interactions in the stem cell niche. Science. 2004;304(5675):1253–5.

Article  CAS  PubMed  Google Scholar 

Yang X-T, Bi Y-Y, Feng D-F. From the vascular microenvironment to neurogenesis. Brain Res Bull. 2011;84(1):1–7.

Article  PubMed  Google Scholar 

Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 2008;3(3):279–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science (New York, NY). 2004;304(5675):1338–40.

Article  CAS  Google Scholar 

Teng H, Zhang ZG, Wang L, Zhang RL, Zhang L, Morris D, et al. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab. 2008;28(4):764–71.

Article  CAS  PubMed  Google Scholar 

Nakagomi N, Nakagomi T, Kubo S, Nakano-Doi A, Saino O, Takata M, et al. Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells (Dayton, Ohio). 2009;27(9):2185–95.

Article  PubMed  Google Scholar 

Jhas S, Ciura S, Belanger-Jasmin S, Dong Z, Llamosas E, Theriault FM, et al. Hes6 inhibits astrocyte differentiation and promotes neurogenesis through different mechanisms. J Neurosci. 2006;26(43):11061–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ni S, Luo Z, Jiang L, Guo Z, Li P, Xu X, et al. UTX/KDM6A deletion promotes recovery of spinal cord injury by epigenetically regulating vascular regeneration. Mol Ther. 2019;27(12):2134–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng W, Xie Y, Luo Z, Liu Y, Xu J, Li C, et al. UTX deletion promotes M2 macrophage polarization by epigenetically regulating endothelial cell-macrophage crosstalk after spinal cord injury. J Nanobiotechnology. 2023;21(1):225.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagaraj K, Hortsch M. Phosphorylation of L1-type cell-adhesion molecules–ankyrins away! Trends Biochem Sci. 2006;31(10):544–6.

Article  CAS  PubMed  Google Scholar 

Li Y, Huang X, An Y, Ren F, Yang ZZ, Zhu H, et al. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation. Biochem Biophys Res Commun. 2013;440(3):405–12.

Article  CAS  PubMed  Google Scholar 

Tsuru A, Mizuguchi M, Uyemura K, Takashima S. Immunohistochemical expression of cell adhesion molecule L1 during development of the human brain. Early Hum Dev. 1996;45(1–2):93–101.

Article  CAS  PubMed  Google Scholar 

Kenwrick S, Watkins A, De Angelis E. Neural cell recognition molecule L1: relating biological complexity to human disease mutations. Hum Mol Genet. 2000;9(6):879–86.

Article  CAS  PubMed  Google Scholar 

Dihné M, Bernreuther C, Sibbe M, Paulus W, Schachner M. A new role for the cell adhesion molecule L1 in neural precursor cell proliferation, differentiation, and transmitter-specific subtype generation. J Neurosci. 2003;23(16):6638–50.

Article  PubMed  PubMed Central  Google Scholar 

Cui YF, Hargus G, Xu JC, Schmid JS, Shen YQ, Glatzel M, et al. Embryonic stem cell-derived L1 overexpressing neural aggregates enhance recovery in Parkinsonian mice. Brain. 2010;133(Pt 1):189–204.

Article  PubMed  Google Scholar 

Turner KN, Schachner M, Anderson RB. Cell adhesion molecule L1 affects the rate of differentiation of enteric neurons in the developing gut. Dev Dyn. 2009;238(3):708–15.

Article  PubMed  Google Scholar 

Jakovcevski I, Djogo N, Holters LS, Szpotowicz E, Schachner M. Transgenic overexpression of the cell adhesion molecule L1 in neurons facilitates recovery after mouse spinal cord injury. Neuroscience. 2013;252:1–12.

Article  CAS  PubMed  Google Scholar 

He X, Knepper M, Ding C, Li J, Castro S, Siddiqui M, et al. Promotion of spinal cord regeneration by neural stem cell-secreted trimerized cell adhesion molecule L1. PLoS One. 2012;7(9):e46223.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magrini E, Villa A, Angiolini F, Doni A, Mazzarol G, Rudini N, et al. Endothelial deficiency of L1 reduces tumor angiogenesis and promotes vessel normalization. J Clin Invest. 2014;124(10):4335–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alves S, Pereira JM, Mayer RL, Goncalves ADA, Impens F, Cabanes D, et al. Cells responding to closely related cholesterol-dependent cytolysins release extracellular vesicles with a common proteomic content including membrane repair proteins. Toxins (Basel). 2022;15(1):4.

Article  PubMed  Google Scholar 

Zhang YZ, Liu F, Song CG, Cao XL, Zhang YF, Wu HN, et al. Exosomes derived from human umbilical vein endothelial cells promote neural stem cell expansion while maintain their stemness in culture. Biochem Biophys Res Commun. 2018;495(1):892–8.

Article  CAS  PubMed  Google Scholar 

Zhou S, Gao B, Sun C, Bai Y, Cheng D, Zhang Y, et al. Vascular endothelial cell-derived exosomes protect neural stem cells against ischemia/reperfusion injury. Neuroscience. 2020;441:184–96.

Article  CAS  PubMed  Google Scholar 

Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151(7):1542–56.

Article  CAS  PubMed  Google Scholar 

Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

Article  CAS  PubMed  Google Scholar 

Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, et al. Characterization and proteomic analysis of ovarian cancer-derived exosomes. J Proteomics. 2013;80:171–82.

Article  CAS  PubMed  Google Scholar 

Lazar I, Clement E, Ducoux-Petit M, Denat L, Soldan V, Dauvillier S, et al. Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines. Pigment Cell Melanoma Res. 2015;28(4):464–75.

Article  CAS  PubMed  Google Scholar 

Cau F, Fanni D, Manchia M, Gerosa C, Piras M, Murru R, et al. Expression of L1 Cell Adhesion Molecule (L1CAM) in extracellular vesicles in the human spinal cord during development. Eur Rev Med Pharmacol Sci. 2022;26(17):6273–82.

CAS  PubMed  Google Scholar 

Ge X, Tang P, Rong Y, Jiang D, Lu X, Ji C, et al. Exosomal miR-155 from M1-polarized macrophages promotes EndoMT and impairs mitochondrial function via activating NF-κB signaling pathway in vascular endothelial cells after traumatic spinal cord injury. Redox Biol. 2021;41:101932.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He Z, Du J, Zhang Y, Xu Y, Huang Q, Zhou Q, et al. Kruppel-like factor 2 contributes to blood-spinal cord barrier integrity and functional recovery from spinal cord injury by augmenting autophagic flux. Theranostics. 2023;13(2):849–66.

Article 

Comments (0)

No login
gif