Differential contribution of THIK-1 K+ channels and P2X7 receptors to ATP-mediated neuroinflammation by human microglia

Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology. 2018;154:204–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyd RJ, Avramopoulos D, Jantzie LL, McCallion AS. Neuroinflammation represents a common theme amongst genetic and environmental risk factors for Alzheimer and Parkinson diseases. J Neuroinflamm. 2022;19:223.

Article  Google Scholar 

Kinch MS. An analysis of FDA-approved drugs for neurological disorders. Drug Discov Today. 2015;20:1040–3.

Article  CAS  PubMed  Google Scholar 

Mallah K, Couch C, Borucki DM, Toutonji A, Alshareef M, Tomlinson S. Anti-inflammatory and neuroprotective agents in clinical trials for CNS disease and injury: where do we go from here? Front Immunol. 2020;11:2021.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23:1018–27.

Article  CAS  PubMed  Google Scholar 

Zhang L, Wang Y, Liu T, Mao Y, Peng B. Novel microglia-based therapeutic approaches to neurodegenerative disorders. Neurosci Bull. 2023;39:491–502.

Article  PubMed  PubMed Central  Google Scholar 

Lewcock JW, Schlepckow K, Di Paolo G, Tahirovic S, Monroe KM, Haass C. Emerging microglia biology defines novel therapeutic approaches for Alzheimer’s disease. Neuron. 2020;108:801–21.

Article  CAS  PubMed  Google Scholar 

Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18:225–42.

Article  CAS  PubMed  Google Scholar 

Hickman S, Izzy S, Sen P, Morsett L, Khoury JE. Microglia in neurodegeneration. Nat Neurosci. 2018;21:1359–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riester K, Brawek B, Savitska D, Fröhlich N, Zirdum E, Mojtahedi N, et al. In vivo characterization of functional states of cortical microglia during peripheral inflammation. Brain Behav Immun. 2020;87:243–55.

Article  CAS  PubMed  Google Scholar 

Heneka MT, McManus RM, Latz E. Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci. 2018;19:610–21.

Article  CAS  PubMed  Google Scholar 

Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 2019;10:1–11.

Google Scholar 

Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38:1142–53.

Article  PubMed  PubMed Central  Google Scholar 

Rivers-Auty J, Brough D. Potassium efflux fires the canon: potassium efflux as a common trigger for canonical and noncanonical NLRP3 pathways. Eur J Immunol. 2015;45:2758–61.

Article  CAS  PubMed  Google Scholar 

Idzko M, Ferrari D, Eltzschig HK. Nucleotide signalling during inflammation. Nature. 2014;509:310–7.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Di Virgilio F, Vultaggio-Poma V, Falzoni S, Giuliani AL. Extracellular ATP: a powerful inflammatory mediator in the central nervous system. Neuropharmacology. 2023;224: 109333.

Article  PubMed  Google Scholar 

North RA. Molecular physiology of P2X receptors. Physiol Rev. 2002;82:1013–67.

Article  CAS  PubMed  Google Scholar 

Riedel T, Schmalzing G, Markwardt F. Influence of extracellular monovalent cations on pore and gating properties of P2X7 receptor-operated single-channel currents. Biophys J. 2007;93:846–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madry C, Kyrargyri V, Arancibia-Cárcamo IL, Jolivet R, Kohsaka S, Bryan RM, et al. Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K+ channel THIK-1. Neuron. 2018;97:299-312.e6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drinkall S, Lawrence CB, Ossola B, Russell S, Bender C, Brice NB, et al. The two pore potassium channel THIK-1 regulates NLRP3 inflammasome activation. Glia. 2022;70:1301–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morin-Brureau M, Milior G, Royer J, Chali F, LeDuigou C, Savary E, et al. Microglial phenotypes in the human epileptic temporal lobe. Brain. 2018;141:3343–60.

Article  PubMed  Google Scholar 

Milior G, Morin-Brureau M, Chali F, Duigou CL, Savary E, Huberfeld G, et al. Distinct P2Y receptors mediate extension and retraction of microglial processes in epileptic and peritumoral human tissue. J Neurosci. 2020;40:1373–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, Sajti E, et al. An environment-dependent transcriptional network specifies human microglia identity. Science. 2017;356: eaal3222.

Article  PubMed  PubMed Central  Google Scholar 

Gerrits E, Heng Y, Boddeke EWGM, Eggen BJL. Transcriptional profiling of microglia; current state of the art and future perspectives. Glia. 2020;68:740–55.

Article  PubMed  Google Scholar 

Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron. 2017;94:759-773.e8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Y, Song WM, Andhey PS, Swain A, Levy T, Miller KR, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat Med. 2020;26:131–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Colonna M. Microglia in Alzheimer’s disease at single-cell level. Are there common patterns in humans and mice? J Exp Med. 2021;218: e20202717.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Urbina-Treviño L, von Mücke-Heim I-A, Deussing JM. P2X7 receptor-related genetic mouse models—tools for translational research in psychiatry. Front Neural Circuits. 2022;16: 876304.

Article  PubMed  PubMed Central  Google Scholar 

Avignone E, Ulmann L, Levavasseur F, Rassendren F, Audinat E. Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling. J Neurosci. 2008;28:9133–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eyo UB, Miner SA, Ahlers KE, Wu L-J, Dailey ME. P2X7 receptor activation regulates microglial cell death during oxygen-glucose deprivation. Neuropharmacology. 2013;73:311–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lalu MM, Montroy J, Begley CG, Bubela T, Hunniford V, Ripsman D, et al. Identifying and understanding factors that affect the translation of therapies from the laboratory to patients: a study protocol. F1000Research. 2020;9:485.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ten SR. Points to improve reproducibility and translation of animal research. Front Behav Neurosci. 2022;16: 869511.

Article  Google Scholar 

Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 2000;20:4106–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bischofberger J, Engel D, Li L, Geiger JR, Jonas P. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat Protoc. 2006;1:2075–81.

Article  CAS  PubMed  Google Scholar 

Kafitz KW, Meier SD, Stephan J, Rose CR. Developmental profile and properties of sulforhodamine 101-labeled glial cells in acute brain slices of rat hippocampus. J Neurosci Methods. 2008;169:84–92.

Article  CAS  PubMed  Google Scholar 

Xu X, Stoyanova EI, Lemiesz AE, Xing J, Mash DC, Heintz N. Species and cell-type properties of classically defined human and rodent neurons and glia. Elife. 2018;7: e37551.

Article 

Comments (0)

No login
gif