Effects of transcranial direct current stimulation alone and in combination with rehabilitation therapies on gait and balance among individuals with Parkinson’s disease: a systematic review and meta-analysis

Dorsey ER, Elbaz A, Nichols E, Abbasi N, Abd-Allah F, Abdelalim A, Adsuar JC, Ansha MG, Brayne C, Choi JY, Collado-Mateo D. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:939–53. https://doi.org/10.1016/s1474-4422(18)30295-3.

Article  Google Scholar 

Kalia LV, Lang AE. Parkinson’s disease. Lancet (London, England). 2015;386:896–912. https://doi.org/10.1016/s0140-6736(14)61393-3.

Article  CAS  PubMed  Google Scholar 

Zhong QQ, Zhu F. Trends in prevalence cases and disability-adjusted life-years of Parkinson’s disease: findings from the global burden of disease study 2019. Neuroepidemiology. 2022. https://doi.org/10.1159/000524208.

Article  PubMed  Google Scholar 

de Lau LML, Breteler MMB. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5:525–35. https://doi.org/10.1016/S1474-4422(06)70471-9.

Article  PubMed  Google Scholar 

Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna, Austria : 1996). 2017;124:901–5. https://doi.org/10.1007/s00702-017-1686-y.

Article  Google Scholar 

Findley LJ. The economic impact of Parkinson’s disease. Parkinsonism Relat Disord. 2007;13:S8-s12. https://doi.org/10.1016/j.parkreldis.2007.06.003.

Article  PubMed  Google Scholar 

Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, Agid Y, DeLong MR, Obeso JA. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci. 2010;11:760–72. https://doi.org/10.1038/nrn2915.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magrinelli F, Picelli A, Tocco P, Federico A, Roncari L, Smania N, Zanette G, Tamburin S. Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinsons Dis. 2016;2016:9832839. https://doi.org/10.1155/2016/9832839.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81. https://doi.org/10.1146/annurev.ne.09.030186.002041.

Article  CAS  PubMed  Google Scholar 

Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M. Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Dis. 2008;23(Suppl 3):S548-559. https://doi.org/10.1002/mds.22062.

Article  Google Scholar 

Caligiore D, Helmich RC, Hallett M, Moustafa AA, Timmermann L, Toni I, Baldassarre G. Parkinson’s disease as a system-level disorder. NPJ Parkinsons Dis. 2016;2:16025. https://doi.org/10.1038/npjparkd.2016.25.

Article  PubMed  PubMed Central  Google Scholar 

McGregor MM, Nelson AB. Circuit mechanisms of Parkinson’s disease. Neuron. 2019;101:1042–56. https://doi.org/10.1016/j.neuron.2019.03.004.

Article  CAS  PubMed  Google Scholar 

Keus S, Munneke M, Graziano M. European physiotherapy guideline for Parkinsons disease. Amsterdam: KNGF/ParkinsonNet; 2014.

Google Scholar 

Madrid J, Benninger DH. Non-invasive brain stimulation for Parkinson’s disease: clinical evidence, latest concepts and future goals—a systematic review. J Neurosci Methods. 2021;347: 108957. https://doi.org/10.1016/j.jneumeth.2020.108957.

Article  PubMed  Google Scholar 

Benninger DH, Hallett M. Non-invasive brain stimulation for Parkinson’s disease: current concepts and outlook 2015. NeuroRehabilitation. 2015;37:11–24. https://doi.org/10.3233/nre-151237.

Article  PubMed  Google Scholar 

da Silva Machado CB, da Silva LM, Gonçalves AF, Andrade PR, Mendes C, de Assis T, Godeiro Júnior CO, Andrade SM. Multisite non-invasive brain stimulation in Parkinson’s disease: a scoping review. NeuroRehabilitation. 2021;49:515–31. https://doi.org/10.3233/nre-210190.

Article  PubMed  PubMed Central  Google Scholar 

Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, Silva MTA, Barbosa ER, Nitsche MA, Pascual-Leone A. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord. 2006;21:1693–702. https://doi.org/10.1002/mds.21012.

Article  PubMed  Google Scholar 

Santos Ferreira I, Teixeira Costa B, Lima Ramos C, Lucena P, Thibaut A, Fregni F. Searching for the optimal tDCS target for motor rehabilitation. J Neuroeng Rehabil. 2019;16:90. https://doi.org/10.1186/s12984-019-0561-5.

Article  PubMed  PubMed Central  Google Scholar 

Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for idiopathic Parkinson’s disease. Cochrane Database Syst Rev. 2016;7:10916. https://doi.org/10.1002/14651858.CD010916.pub2.

Article  Google Scholar 

Lee HK, Ahn SJ, Shin YM, Kang N, Cauraugh JH. Does transcranial direct current stimulation improve functional locomotion in people with Parkinson’s disease? A systematic review and meta-analysis. J Neuroeng Rehabil. 2019;16:84. https://doi.org/10.1186/s12984-019-0562-4.

Article  PubMed  PubMed Central  Google Scholar 

Orrù G, Baroni M, Cesari V, Conversano C, Hitchcott PK, Gemignani A. The effect of single and repeated tDCS sessions on motor symptoms in Parkinson’s disease: a systematic review. Arch Ital Biol. 2019;157:89–101. https://doi.org/10.12871/00039829201925.

Article  PubMed  Google Scholar 

Simpson MW, Mak M. The effect of transcranial direct current stimulation on upper limb motor performance in Parkinson’s disease: a systematic review. J Neurol. 2020;267:3479–88. https://doi.org/10.1007/s00415-019-09385-y.

Article  PubMed  Google Scholar 

Cammisuli DM, Cignoni F, Ceravolo R, Bonuccelli U, Castelnuovo G. Transcranial direct current stimulation (tDCS) as a useful rehabilitation strategy to improve cognition in patients with Alzheimer’s disease and Parkinson’s disease: an updated systematic review of randomized controlled trials. Front Neurol. 2021;12: 798191. https://doi.org/10.3389/fneur.2021.798191.

Article  PubMed  Google Scholar 

de Oliveira PCA, de Araújo TAB, Machado D, Rodrigues AC, Bikson M, Andrade SM, Okano AH, Simplicio H, Pegado R, Morya E. Transcranial direct current stimulation on Parkinson’s disease: systematic review and meta-analysis. Front Neurol. 2021;12: 794784. https://doi.org/10.3389/fneur.2021.794784.

Article  PubMed  Google Scholar 

Pol F, Salehinejad MA, Baharlouei H, Nitsche MA. The effects of transcranial direct current stimulation on gait in patients with Parkinson’s disease: a systematic review. Transl Neurodegener. 2021;10:22. https://doi.org/10.1186/s40035-021-00245-2.

Article  PubMed  PubMed Central  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71. https://doi.org/10.1136/bmj.n71.

Article  PubMed  PubMed Central  Google Scholar 

Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4. https://doi.org/10.1136/jnnp.55.3.181.

Article  CAS  PubMed  PubMed Central  Google Scholar 

https://pedro.org.au/wp-content/uploads/PEDro_scale.pdf. Accessed 5 May 2022.

de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55:129–33. https://doi.org/10.1016/s0004-9514(09)70043-1.

Article  PubMed  Google Scholar 

Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73:712–6. https://doi.org/10.1046/j.1445-2197.2003.02748.x.

Article  PubMed  Google Scholar 

Howick J, Chalmers I, Glasziou P, Greenhalgh T, Heneghan C, Liberati A, Moschetti I, Phillips B, Thornton H. Explanation of the 2011 Oxford Centre for Evidence-Based Medicine (OCEBM) Levels of Evidence (Background Document)”. Oxford Centre for Evidence-Based Medicine. 2011. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/explanation-of-the-2011-ocebm-levels-of-evidence/. Accessed 5 May 2022.

Higgins J, Li T, Deeks J, Higgins JPT. Chapter 6. Choosing effect measures and computing estimates of effect. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane handbook for systematic reviews of interventions version 6.0 (updated July 2019). Hoboken: Wiley; 2019.

Chapter  Google Scholar 

Higgins JP, Eldridge S, Li T. Including variants on randomized trials. In: Julian PT, editor. Cochrane handbook for systematic reviews of interventions. Hobeken: Wiley; 2019. p. 569–93.

Chapter  Google Scholar 

Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13. https://doi.org/10.1186/1471-2288-5-13.

Article  PubMed  PubMed Central  Google Scholar 

Cohen J. Statistical power analysis. Curr Dir Psychol Sci. 1992;1:98–101. https://doi.org/10.1111/1467-8721.ep10768783.

Article  Google Scholar 

Rücker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I(2) in assessing heterogeneity may mislead. BMC Med Res Methodol. 2008;8:79. https://doi.org/10.1186/1471-2288-8-79.

Article  PubMed  PubMed Central  Google Scholar 

Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58. https://doi.org/10.1002/sim.1186.

Article  PubMed  Google Scholar 

Page MJ, Sterne JAC, Higgins JPT, Egger M. Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: a review. Res Synth Methods. 2021;12:248–59. https://doi.org/10.1002/jrsm.1468.

Comments (0)

No login
gif